Volume 39 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WANG Meng-ya, LI Shi-you, GAO Can-kun, FAN Xiao-qi, QUAN Yin, LI Xiao-hua, LI Chun-lei, ZHANG Ning-shuang. The production of electrodes for microsupercapacitors based on MoS2-modified reduced graphene oxide aerogels by 3D printing. New Carbon Mater., 2024, 39(2): 283-296. doi: 10.1016/S1872-5805(24)60823-1
Citation: WANG Meng-ya, LI Shi-you, GAO Can-kun, FAN Xiao-qi, QUAN Yin, LI Xiao-hua, LI Chun-lei, ZHANG Ning-shuang. The production of electrodes for microsupercapacitors based on MoS2-modified reduced graphene oxide aerogels by 3D printing. New Carbon Mater., 2024, 39(2): 283-296. doi: 10.1016/S1872-5805(24)60823-1

The production of electrodes for microsupercapacitors based on MoS2-modified reduced graphene oxide aerogels by 3D printing

doi: 10.1016/S1872-5805(24)60823-1
Funds:  This work was supported by the Key R&D plan of Gansu Province (21YF5GA079) and the Lanzhou University of Technology Hongliu First-class Discipline Construction Program
More Information
  • Author Bio:

    王梦雅,博士研究生. E-mail: 932909390@qq.com

  • Corresponding author: ZHANG Ning-shuang, Ph.D, Associate Professor. E-mail:zhangns@lut.edu.cn
  • Received Date: 2023-08-05
  • Accepted Date: 2023-11-10
  • Rev Recd Date: 2023-11-09
  • Available Online: 2023-11-20
  • Publish Date: 2024-04-20
  • Micro-supercapacitors (MSCs) are of interest because of their high power density and excellent cycling performance, offering a broad array of potential applications. However, preparing electrodes for the MSCs with an extremely high areal capacitance and energy density remains a challenge. We constructed MSC electrodes with an ultra-high area capacitance and a high energy density, using reduced graphene oxide aerogel (GA) and MoS2 as the active materials, combined with 3D printing and surface modification. Using 3D printing, we obtained electrodes with a stable macrostructure and a GA-crosslinked micropore structure. We also used a solution method to load the surface of the printed electrode with molybdenum disulfide nanosheets, further improving the electrochemical performance. The surface capacitance of the electrode reached 3.99 F cm2, the power density was 194 W cm2, and the energy density was 1997 mWh cm2, confirming its excellent electrochemical performance and cycling stability. This work provides a simple and efficient method for preparing MSC electrodes with a high areal capacitance and energy density, making them ideal for portable electronic devices.
  • loading
  • [1]
    Zhu R. C, Toward fully processable micro-supercapacitors[J]. Joule,2021,5:2257-2258. doi: 10.1016/j.joule.2021.08.008
    [2]
    Zhou X A, Zhang F L, Fu X L, et al. Utilizing fast ion conductor for singel-crystal Ni-rich cathodes to achieve dual-functional modification of conductor network constructing and near-surface doping[J]. Energy Storage Materials,2022,52:19-28. doi: 10.1016/j.ensm.2022.07.029
    [3]
    Zhang F, Li Z G, Xu M J, et al. A review of 3D printed porous ceramics[J]. Journal of the European Ceramic Society,2022,42:3351-3373. doi: 10.1016/j.jeurceramsoc.2022.02.039
    [4]
    Ma J X, Zheng S H, Chi L P, et al. 3D printing flexible sodium-ion microbatteries with ultrahigh areal capacity and robust rate capability[J]. Advanced Materials,2022,34:39.
    [5]
    Guo B B, Liang G J, Yu S X, et al. 3D printing of reduced graphene oxide aerogels for energy storage devices: A paradigm from materials and technologies to applications[J]. Energy Storage Materials,2021,39:146-165. doi: 10.1016/j.ensm.2021.04.021
    [6]
    Long J W, Dunn B, Rolison D R, et al. 3D architectures for batteries and electrodes[J]. Advanced Energy Materials,2020,10:6.
    [7]
    Yuan J, Qiu M, Chen J X, et al. High mass loading 3D-printed sodium-ion hybrid capacitors[J]. Advanced Functional Materials,2022,32:2203732. doi: 10.1002/adfm.202203732
    [8]
    Lin D, Chandrasekaran S, Forien J B, et al. 3D-printed graded electrode with ultrahigh MnO2 loading for non-aqueous electrochemical energy storage[J]. Advanced Energy Materials, 2023, 2300408.
    [9]
    Mo T M, Wang Z X, Zeng L, et al. Energy storage mechanism in supercapacitors with porous graphdiynes: Effects of pore topology and electrode metallicity[J]. Advanced Materials,2023,35:2301118. doi: 10.1002/adma.202301118
    [10]
    Yue C A, Kang H, Jiang F X, et al. The construction of hierarchical PEDOT@MoS2 nanocomposite for high-performance supercapacitor[J]. Applied Surface Science,2021,546:149088. doi: 10.1016/j.apsusc.2021.149088
    [11]
    Ali B A, Omar A A, Khalil A G, et al. Untapped potential of polymorph MoS2: Tuned cationic intercalation for high-performance symmetric supercapacitors[J]. ACS Applied Materials & Interfaces,2019,11:33955-33965.
    [12]
    Zhou H J, Zhu G Y, Dong S Y, et al. Ethanol-ionduced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors[J]. Advanced Materials,2023,35:2211523. doi: 10.1002/adma.202211523
    [13]
    Clerici F, Fontana M, Bianco S, et al. Lamberti, In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2016,8:10459-10465.
    [14]
    Asbani B, Buvat G, Freixas J, et al. Ultra-high areal capacitance and high rate capability RuO2 thin film electrodes for 3D micro-supercapacitors[J]. Energy Storage Materials,2021,42:259-267. doi: 10.1016/j.ensm.2021.07.038
    [15]
    Yang W, He L, Tian X C, et al. Carbon-MEMS-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density[J]. Small,2017,13:1700639. doi: 10.1002/smll.201700639
    [16]
    Li D D, Yang S, Chen X, et al. 3D wearable fabric-based micro-supercapacitors with ultra-high areal capacitance[J]. Advanced Functional Materials,2021,31:2107484. doi: 10.1002/adfm.202107484
    [17]
    Gao W L, Michalička J, Pumera M. Hierarchical atomic layer deposited V2O5 on 3D printed nanocarbon electrodes for high-performance aqueous zinc-ion batteries[J]. Small,2022,18:2105572. doi: 10.1002/smll.202105572
    [18]
    Jang J S, Jung H J, Chong S Y, et al. 2D materials decorated with ultra-thin and porous graphene oxide for high stability and selective surface activity[J]. Advanced Materials,2020,32:10.
    [19]
    Li P Z, Chen N, Al-Hamry A, et al. Inkjet-printed MoS2-based 3D-structured electrocatalysts on Cu films for ultra-efficient hydrogen evolution reaction[J]. Chemical Engineering Journal,2023,457:141289. doi: 10.1016/j.cej.2023.141289
    [20]
    Zhang W, Liu H Z, Zhang X N, et al. 3D printed micro-electrochemical storage devices: From design to integration[J]. Advanced Functional Materials,2021,31:2104909. doi: 10.1002/adfm.202104909
    [21]
    Ma J X, Zheng S H, Cao Y X, et al. Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics[J]. Advanced Energy Materials,2021,11:23.
    [22]
    Biswas R K, Vijayaraghavan R K, McNally P, et al. Graphene growth kinetics for CO2 laser carbonization of polyimide[J]. Materials Letters,2022,307:131097. doi: 10.1016/j.matlet.2021.131097
    [23]
    Yu M, Feng X L. Thin-film electrode-based supercapacitors[J]. Joule,2019,3:338-360. doi: 10.1016/j.joule.2018.12.012
    [24]
    Li X L, Ling S W, Zeng L, et al. Directional freezing assisted 3D printing to solve a flexible battery dilemma: ultrahigh energy/power density and uncompromised mechanical compliance[J]. Advanced Energy Materials,2022,12:8.
    [25]
    Manjakkal L, Pullanchiyodan A, Yogeswaran N, et al. A wearable supercapacitor based on conductive PEDOT: PSS-coated cloth and a sweat electrolyte[J]. Advanced Materials,2020,32:13.
    [26]
    Huang J, Wu P Y. Controlled assembly of luminescent lanthanide-organic frameworks via post-treatment of 3D-printed objects[J]. Nano-Micro Letters,2021,13:309-322.
    [27]
    Sohouli E, Adib K, Maddah B, et al. Preparation of a supercapacitor electrode based on carbon nano-onions/manganese dioxide/iron oxide nanocomposite[J]. Journal of Energy Storage,2022,52:104987. doi: 10.1016/j.est.2022.104987
    [28]
    Yang H, Wan Y, Sun K, et al. Reconciling mass loading and gravimetric performance of MnO2 cathodes by 3D-printed carbon structures for zinc-ion batteries[J]. Advanced Functional Materials, 2023, 2215076.
    [29]
    He H N, Zeng L, Luo D, et al. 3D printing of electron/ion-flux dual-gradient anodes for dendrite-free zinc batteries[J]. Advanced Materials,2023,35:2211498. doi: 10.1002/adma.202211498
    [30]
    Meng Q, Du C C, Xu Z Y, et al. Siloxene-reduced graphene oxide composite hydrogel for supercapacitors[J]. Chemical Engineering Journal,2020,393:124684. doi: 10.1016/j.cej.2020.124684
    [31]
    Zhang F L, Wang C, Zhao D N, et al. Synergistic effect of sulfolane and lithium difluoro(oxalate)borate on improvement of compatibility for LiNi0. 8Co0. 15Al0.05O2 electrode[J]. Electrochimica Acta,2020,337:135727. doi: 10.1016/j.electacta.2020.135727
    [32]
    Zhou G Q, Li M C, Liu C Z, et al. 3D printed nitrogen-doped thick carbon architectures for supercapacitor: Ink rheology and electrochemical performance[J]. Advanced Science,2023,10:2206320. doi: 10.1002/advs.202206320
    [33]
    Zhang M R, Xu T Z, Wang D, et al. A 3D-printed proton pseudocapacitor with ultrahigh mass loading and areal energy density for fast energy storage at low temperature[J]. Advanced Materials, 2023, 2209963.
    [34]
    Teng W L, Zhou Q Q, Wang X K, et al. Enhancing ions/electrons dual transport in rGO/PEDOT: PSS fiber for high-performance supercapacitor[J]. Carbon,2021,189:284-292.
    [35]
    Yao B, Cui Q. Y, Cardenas A, et al. High-stability conducting polymer-based conformal electrodes for bio-/iono-electronics[J]. Materials Today,2022,53:84-96. doi: 10.1016/j.mattod.2021.12.002
    [36]
    Bießmann L, Kreuzer L P, Widmann T, et al. Monitoring the swelling behanior of PEDOT: PSS electrodes under high humidity conditions[J]. ACS Applied Materials & Interfaces,2018,10:9865-9872.
    [37]
    Dingler C, Waiter R, Gompf B, et al. In situ monitoring of optical constants, conductivity, and swelling of PEDOT: PSS from doped to the fully neutral state[J]. Macromolecules,2022,55:1600-1608. doi: 10.1021/acs.macromol.1c02515
    [38]
    Zhang G L, Zhang R F, Zang R Q, et al. 3D hetero-nanostructured electrode constructed on carbon fiber paper with 2D 1T-MoS2/1D-Cu(OH)2 for flexible asymmetric solid-state supercapacitors[J]. Journal of Power Sources,2022,523:11.
    [39]
    Li B, Liang X, Li G, et al. Inkjet-printed ultrathin MoS2 based electrodes for flexible in-plane microsupercapacitors[J]. ACS Applied Materials and Interfaces,2020,12:39444-39454. doi: 10.1021/acsami.0c11788
    [40]
    Chen H, Song T B, Tang L. B, et al. In-situ growth of vertically aligned MoS2 nanowalls on reduced graphene oxide enables a large capacity and highly stable anode for sodium ion storage[J]. Journal of Power Sources, 2020, 445.
    [41]
    Huo J H, Xue Y J, Zhang X J, et al. Hierarchical porous reduced graphene oxide decorated with molybdenum disulfide for high-performance supercapacitors[J]. Electrochimica Acta,2018,292:639-645. doi: 10.1016/j.electacta.2018.09.180
    [42]
    Xu S R, Zhu Q, Chen T, et al. Hydrothermal synthesis of Co-doped-MoS2/reduced graphene oxide hybrids with enhanced electrochemical lithium storage performances[J]. Materials Chemistry and Physics,2018,219:399-410. doi: 10.1016/j.matchemphys.2018.08.048
    [43]
    Yin B, Liang S Q, Yu D D, et al. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries[J]. Advanced Materials,2021,33:11.
    [44]
    Kang W, Zeng L, Ling S W, et al. 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility[J]. Advanced Energy Materials,2021,11:2100020. doi: 10.1002/aenm.202100020
    [45]
    Li E Y, Liu R, Huang S, et al. Flexible N-doped active carbon/bacterial cellulose paper for supercapacitor electrode with high areal performance[J]. Synthetic. Metals,2017,226:104-112. doi: 10.1016/j.synthmet.2017.02.008
    [46]
    Tagliaferri S, Nagaraju G, Panagiotopoulos A, et al. Aqueous inks of pristine graphene for 3D printed microsupercapacitors with high capacitance[J]. ACS Nano,2021,15:15342-15353. doi: 10.1021/acsnano.1c06535
    [47]
    Cui X L, Wang S X, Mao L P, et al. Optimizing transition metal ion ratio of LiNi0. 5+xCo0. 2+yMn0.3+zO2 (x+y+z=0) by simplex and normalization combined method[J]. Electrochimica Acta,2020,337:135709. doi: 10.1016/j.electacta.2020.135709
    [48]
    Fu X L, Zhou X A, Zhao D N, et al. Study on electrochemical performance of Al-substitution for different cations in Li-rich Mn-based materials[J]. Electrochimica Acta,2021,394:139136. doi: 10.1016/j.electacta.2021.139136
    [49]
    Kazari H, Pajootan E, Hubert P, et al. Dry synthesis of binder-free ruthenium nitride-coated carbon nanotubes as a flexible supercapacitor electrode[J]. ACS Applied Materials & Interfaces,2022,14:15112-15121.
    [50]
    Yuan Y J, Jiang L, Li X, et al. Ultrafast shaped laser induced synthesis of MXene quantum dots/graphene for transparent supercapacitors[J]. Advanced Materials,2022,34:2110013. doi: 10.1002/adma.202110013
  • 20240207 Supporting Information.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(134) PDF Downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return