Volume 39 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
TIAN Zhen, XUE Lei-lei, DING Hong-yuan. A highly efficient absorptive and catalytic self-supporting Fe2O3/CC host for high performance Li-S batteries. New Carbon Mater., 2024, 39(2): 345-353. doi: 10.1016/S1872-5805(24)60825-5
Citation: TIAN Zhen, XUE Lei-lei, DING Hong-yuan. A highly efficient absorptive and catalytic self-supporting Fe2O3/CC host for high performance Li-S batteries. New Carbon Mater., 2024, 39(2): 345-353. doi: 10.1016/S1872-5805(24)60825-5

A highly efficient absorptive and catalytic self-supporting Fe2O3/CC host for high performance Li-S batteries

doi: 10.1016/S1872-5805(24)60825-5
Funds:  National Natural Science Foundation of China (52202051); Basic Research Program of Shanxi Province (20210302124643).
More Information
  • Author Bio:

    TIAN Zhen, Ph.D Candidate. E-mail: 20200141@nuc.edu.cn

  • Corresponding author: DING Hong-yuan, Senior engineer. E-mail: hongyuanding@vip.qq.com
  • Received Date: 2023-08-04
  • Accepted Date: 2023-11-17
  • Rev Recd Date: 2023-11-15
  • Available Online: 2023-11-21
  • Publish Date: 2024-04-03
  • The lithium−sulfur (Li-S) battery is a promising energy storage system because of its high energy density and low cost. However, the shuttling of lithium polysulfides (LiPSs) and low conductivity of the S cathode are barriers to its practical application. Fe2O3 nanorods were grown on a carbon cloth (Fe2O3/CC) by a solvothermal reaction and calcination to obtain a cathode for the battery. The mesoporous structure of the Fe2O3 and the CC conducting network facilitates lithium-ion and electron transport. Meanwhile, the nanorod arrangement results in the exposure of more Fe2O3 active sites, which improves the adsorption and rapid conversion of LiPSs. As a result, a Li–S cell using a Fe2O3/CC cathode has a high capacity of 1250 mAh g1 at 0.1 C with an excellent life of over 100 cycles with a capacity retention of 67%. It also has a 70% capacity retention after 1000 cycles at 0.2 C. The excellent electrochemical performance of the Fe2O3/CC cathode indicates its potential applications in Li-S batteries.

  • loading
  • [1]
    Li Z N, Sami I, Yang J, et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries[J]. Nature Energy,2023,8:84-93. doi: 10.1038/s41560-022-01175-7
    [2]
    Zhang P P, Zhao Y G, LI Y K, et al. Revealing the selective bifunctional electrocatalytic sites via in situ irradiated X-ray photoelectron spectroscopy for lithium–sulfur battery[J]. Advanced Science,2023,10(8):2206786. doi: 10.1002/advs.202206786
    [3]
    Shi F Y, Onofrio N, Chen C H, et al. Stable liquid-sulfur generation on transition-metal dichalcogenides toward low-temperature lithium-sulfur batteries[J]. ACS Nano,2022,16(9):14412-14421. doi: 10.1021/acsnano.2c04769
    [4]
    Zhao Z X, Yi Z L, Duan Y R, et al. Regulating the d-p band center of FeP/Fe2P heterostructure host with built-in electric field enabled efficient bidirectional electrocatalyst toward advanced lithium-sulfur batteries[J]. Chemical Engineering Journal,2023,463:142397. doi: 10.1016/j.cej.2023.142397
    [5]
    Lee B J, Kang T H, Lee H Y, et al. Revisiting the role of conductivity and polarity of host materials for long-life lithium–sulfur battery[J]. Advanced Energy Materials,2020,10:1903934. doi: 10.1002/aenm.201903934
    [6]
    Qin B, Wang Q, YAO W Q, et al. Heterostructured Mn3O4-MnS multi-shelled hollow spheres for enhanced polysulfide regulation in lithium-sulfur batteries [J]. Energy & Environmental Materials, 2023, 6, e12475.
    [7]
    Zhao Z X, Duan Y R, Chen F, et al. Multifunctional transitional metal-based phosphide nanoparticles towards improved polysulfide confinement and redox kinetics for highly stable lithium-sulfur batteries[J]. Chemical Engineering Journal,2022,450:138310. doi: 10.1016/j.cej.2022.138310
    [8]
    Zhou C Y, Li X C, Jiang H L, et al. Pulverizing Fe2O3 nanoparticles for developing Fe3C/N-co doped carbon nanoboxes with multiple polysulfide anchoring and converting activity in Li-S batteries[J]. Advanced Functional Materials,2021,31(8):2011249.
    [9]
    Zheng C, Niu S Z, Lv W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy,2017,33:306-312. doi: 10.1016/j.nanoen.2017.01.040
    [10]
    Zhang H, Gao Q M, Li Z Y, et al. A rGO-based Fe2O3 and Mn3O4 binary crystals nanocomposite additive for high performance Li–S battery[J]. Electrochimica Acta,2020,343:136079. doi: 10.1016/j.electacta.2020.136079
    [11]
    Wang C, Sui G Z, Guo D X, et al. Oxygen vacancy-engineered Fe2O3 porous microspheres with large specific surface area for hydrogen evolution reaction and lithium-sulfur battery[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,649:129476. doi: 10.1016/j.colsurfa.2022.129476
    [12]
    Li J, Xu Y L, He C, et al. Three-dimensional embroidered ball-like α-Fe2O3 synthesized by a microwave hydrothermal method as a sulfur immobilizer for high-performance Li-S batteries[J]. Journal of Materials Chemistry C,2022,10:7066-7075. doi: 10.1039/D1TC05694H
    [13]
    Deng S G, Guo T Z, Heier J, et al. Unraveling polysulfide's adsorption and electrocatalytic conversion on metal oxides for Li-S batteries[J]. Advanced Science,2023,5:2204930.
    [14]
    Wang M, Emre A E, Kim J Y, et al. Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters[J]. Nature Communications,2022,13:278. doi: 10.1038/s41467-021-27861-w
    [15]
    Zhao Z X, Yi Z, Li H J, et al. Synergetic effect of spatially separated dual co-catalyst for accelerating multiple conversion reaction in advanced lithium sulfur batteries[J]. Nano Energy,2021,81:105621. doi: 10.1016/j.nanoen.2020.105621
    [16]
    Niu S Z, Wu S D, Lv W, et al. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries[J]. New Carbon Materials,2017,32(4):289-296. doi: 10.1016/S1872-5805(17)60123-9
    [17]
    Li F F, Lv W, Niu S Z, et al. Preparation and electrochemical performance of a graphene-wrapped carbon/sulphur composite cathode[J]. New Carbon Materials,2014,29(4):309-315. doi: 10.1016/S1872-5805(14)60140-2
    [18]
    Zhao Z X, Yi Z, Li H J, et al. Understanding the modulation effect and surface chemistry in a heteroatom incorporated graphene-like matrix toward high-rate lithium-sulfur batteries[J]. Nanoscale,2021,13:14777-14784. doi: 10.1039/D1NR03390E
    [19]
    Li T T, Zhang Y, Chen J H, et al. Flexible binder for S@pPAN cathode of lithium sulfur battery[J]. Journal of Inorganic Materials,2022,37(2):182-188. doi: 10.15541/jim20210303
    [20]
    Yao Y K, Zhao Z X, Ren R N, et al. Tailoring nickel-cobalt bimetallic alloy as highly effective catalyst in modified separators for high-performance lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2023,945:169242. doi: 10.1016/j.jallcom.2023.169242
    [21]
    Chen X R, Yu X F, He B, et al. Encapsulation of sulfur inside micro-nano carbon/molybdenum carbide by in-situ chemical transformation for high-performance Li-S batteries[J]. New Carbon Materials,2023,38(2):337-346. doi: 10.1016/S1872-5805(23)60713-9
    [22]
    He J R, Bhargav A, Manthiram A. High-performance anode-free Li-S batteries with an integrated Li2S-electrocatalyst cathode[J]. ACS Energy Letters,2022,2(7):583-590.
    [23]
    Zhang C Y, Zhang C Q, Sun G W, et al. Spin effect to promote reaction kinetics and overall performance of lithium-sulfur batteries under external magnetic field[J]. Angewandte Chemie International Edition,2022,49(61):202211570.
    [24]
    Jiang B, Qiu Y, Tian D, et al. Crystal facet engineering induced active tin dioxide nanocatalysts for highly stable lithium–sulfur batteries[J]. Advanced Energy Materials,2021,11:2102995. doi: 10.1002/aenm.202102995
    [25]
    Zhang K, Zhao Z X, Wang X M. Ni2P/rGO as a highly efficient sulfur host toward enhancing the polysulfides redox for lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2022,906:164376.
    [26]
    Liu J Y, Ding Y Y, Shen Z H, et al. A lamellar yolk–shell lithium-sulfur battery cathode displaying ultralong cycling life, high-rate performance, and temperature tolerance[J]. Advanced Science,2022,9(3):2103517. doi: 10.1002/advs.202103517
    [27]
    Yin F, Jin Q, Zhang X T, et al. Design of a 3D CNT/Ti3C2Tx aerogel-modified separator for Li–S batteries to eliminate both the shuttle effect and slow redox kinetics of polysulfides[J]. New Carbon Materials,2022,37(4):724-733. doi: 10.1016/S1872-5805(21)60085-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article Views(86) PDF Downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return