Volume 39 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
WANG Zhi-dong, XIA Tian, LI Zhen-hua, SHAO Ming-fei. A review of carbon-based catalysts and catalyst supports for simultaneous organic electro-oxidation and hydrogen evolution reactions. New Carbon Mater., 2024, 39(1): 64-77. doi: 10.1016/S1872-5805(24)60829-2
Citation: WANG Zhi-dong, XIA Tian, LI Zhen-hua, SHAO Ming-fei. A review of carbon-based catalysts and catalyst supports for simultaneous organic electro-oxidation and hydrogen evolution reactions. New Carbon Mater., 2024, 39(1): 64-77. doi: 10.1016/S1872-5805(24)60829-2

A review of carbon-based catalysts and catalyst supports for simultaneous organic electro-oxidation and hydrogen evolution reactions

doi: 10.1016/S1872-5805(24)60829-2
More Information
  • Producing organic electro-oxidation and hydrogen evolution reactions (HER) simultaneously in an electrolytic cell is an appealing method for generating valuable chemicals at the anode while also producing H2 at the cathode. Within this framework, the task of designing energy-saving electrocatalysts with high selectivity and stability is a considerable challenge. Carbon-based catalysts, along with their supports, have emerged as promising candidates due to their diverse sources, large specific surface area, high porosity and multidimensional characteristics. This review summarizes progress from 2012 to 2022, in the use of carbon-based catalysts and their supports for organic electrooxidation and HER. It delves into outer-sphere electrooxidation mechanisms involving molecule-mediated oxidation and oxidative radical coupling reactions, as well as inner-sphere electrooxidation mechanisms, encompassing both acidic and alkaline electrolytes. The review also explores prospective research directions within this domain, addressing various aspects such as the design of electrocatalytic materials, the study of the relationship between the structure and properties of electrocatalysts, as well as examining their potential industrial applications.
  • loading
  • [1]
    Johnston B, Mayo M C, Khare A. Hydrogen: The energy source for the 21st century[J]. Technovation,2005,25(6):569-585. doi: 10.1016/j.technovation.2003.11.005
    [2]
    Dawood F, Anda M, Shafiullah G M. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy,2020,45(7):3847-3869. doi: 10.1016/j.ijhydene.2019.12.059
    [3]
    Hasan M M, Rakib R H, Hasnat M A, et al. Electroless deposition of silver dendrite nanostructure onto glassy carbon electrode and its electrocatalytic activity for ascorbic acid oxidation[J]. ACS Applied Energy Materials,2020,3(3):2907-2915. doi: 10.1021/acsaem.9b02513
    [4]
    Sánchez-Bastardo N, Schlögl R, Ruland H. Methane pyrolysis for zero-emission hydrogen production: A potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy[J]. Industrial & Engineering Chemistry Research,2021,60(32):11855-11881.
    [5]
    Popczun E J, McKone J R, Read C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society,2013,135(25):9267-9270. doi: 10.1021/ja403440e
    [6]
    Tarhan C, Çil M A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods[J]. Journal of Energy Storage,2021,40:102676. doi: 10.1016/j.est.2021.102676
    [7]
    Hosseini S E, Wahid M A. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy[J]. International Journal of Energy Research,2020,44(6):4110-4131. doi: 10.1002/er.4930
    [8]
    Wang Y, Yan D, El Hankari S, et al. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting[J]. Advanced Science,2018,5(8):1800064. doi: 10.1002/advs.201800064
    [9]
    Zeng L, Zhao Z, Lv F, et al. Anti-dissolution Pt single site with Pt (OH)(O3)/Co (P) coordination for efficient alkaline water splitting electrolyzer[J]. nature communications,2022,13(1):3822. doi: 10.1038/s41467-022-31406-0
    [10]
    Earar K, Arbune M, Dorobat C M, et al. Biochemical effects and therapeutic application of vitamin C (C6H8O6) on COVID-19 infection[J]. Revista de Chimie,2020,71(5):473-478. doi: 10.37358/RC.20.5.8159
    [11]
    Wu A, Xie Y, Ma H, et al. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting[J]. Nano Energy,2018,44:353-363. doi: 10.1016/j.nanoen.2017.11.045
    [12]
    Wang J, Kong H, Zhang J, et al. Carbon-based electrocatalysts for sustainable energy applications[J]. Progress in Materials Science,2021,116:100717. doi: 10.1016/j.pmatsci.2020.100717
    [13]
    Wang N, Cao Z, Zheng X, et al. Hydration-effect-promoting Ni-Fe oxyhydroxide catalysts for neutral water oxidation[J]. Advanced Materials,2020,32(8):1906806. doi: 10.1002/adma.201906806
    [14]
    Li P, Zhao R, Chen H, et al. Recent advances in the development of water oxidation electrocatalysts at mild pH[J]. Small,2019,15(13):1805103. doi: 10.1002/smll.201805103
    [15]
    Li Y, Wei X, Chen L, et al. Electrocatalytic hydrogen production trilogy[J]. Angewandte Chemie International Edition,2021,60(36):19550-19571. doi: 10.1002/anie.202009854
    [16]
    You B, Liu X, Jiang N, et al. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization[J]. Journal of the American Chemical society,2016,138(41):13639-13646. doi: 10.1021/jacs.6b07127
    [17]
    Chen Z J, Dong J, Wu J, et al. Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density[J]. Nature Communications,2023,14(1):4210. doi: 10.1038/s41467-023-39848-w
    [18]
    You B, Sun Y. Innovative strategies for electrocatalytic water splitting[J]. Accounts of chemical research,2018,51(7):1571-1580. doi: 10.1021/acs.accounts.8b00002
    [19]
    Xu Y, Zhang B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions[J]. ChemElectroChem,2019,6(13):3214-3226. doi: 10.1002/celc.201900675
    [20]
    Kakati N, Maiti J, Lee S H, et al. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt–Ru?[J]. Chemical reviews,2014,114(24):12397-12429. doi: 10.1021/cr400389f
    [21]
    Cheung K C, Wong W L, Ma D L, et al. Transition metal complexes as electrocatalysts-development and applications in electro-oxidation reactions[J]. Coordination Chemistry Reviews,2007,251(17-20):2367-2385. doi: 10.1016/j.ccr.2007.04.004
    [22]
    Trincado M, Banerjee D, Grützmacher H. Molecular catalysts for hydrogen production from alcohols[J]. Energy & Environmental Science,2014,7(8):2464-2503.
    [23]
    Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2015,3(29):14942-14962. doi: 10.1039/C5TA02974K
    [24]
    Yu X, Ye S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst[J]. Journal of power sources,2007,172(1):145-154. doi: 10.1016/j.jpowsour.2007.07.048
    [25]
    Serp P, Figueiredo J L. Carbon Materials for Catalysis[M]. Hoboken, the USA: John Wiley & Sons, Inc. , 2009.
    [26]
    Li W, Liu J, Zhao D. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials,2016,1(6):1-17.
    [27]
    Liu X, Dai L. Carbon-based metal-free catalysts[J]. Nature Reviews Materials,2016,1(11):1-12.
    [28]
    Zhao S, Wang D W, Amal R, et al. Carbon‐based metal‐free catalysts for key reactions involved in energy conversion and storage[J]. Advanced Materials,2019,31(9):1801526. doi: 10.1002/adma.201801526
    [29]
    Li W, Yu C, Tan X, et al. Recent advances in the electroreduction of carbon dioxide to formic acid over carbon-based materials[J]. New Carbon Materials,2022,37(2):277-287. doi: 10.1016/S1872-5805(22)60592-4
    [30]
    Zhou W, Zhou Y, Yang L, et al. N-doped carbon-coated cobalt nanorod arrays supported on a titanium mesh as highly active electrocatalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2015,3(5):1915-1919. doi: 10.1039/C4TA06284A
    [31]
    Ito Y, Cong W, Fujita T, et al. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction[J]. Angewandte Chemie International Edition,2015,54(7):2131-2136. doi: 10.1002/anie.201410050
    [32]
    Duan J, Chen S, Jaroniec M, et al. Porous C3N4 nanolayers@ N-graphene films as catalyst electrodes for highly efficient hydrogen evolution[J]. ACS Nano,2015,9(1):931-940. doi: 10.1021/nn506701x
    [33]
    Cui H, Zhou Z, Jia D. Heteroatom-doped graphene as electrocatalysts for air cathodes[J]. Materials Horizons,2017,4(1):7-19. doi: 10.1039/C6MH00358C
    [34]
    Lei Y, Jia M, Guo P, et al. MoP nanoparticles encapsulated in P-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Catalysis Communications,2020,140:106000. doi: 10.1016/j.catcom.2020.106000
    [35]
    Yan G, Feng X, Khan S U, et al. Polyoxometalate and resin-derived P-doped Mo2C@N-doped carbon as a highly efficient hydrogen-evolution reaction catalyst at all pH values[J]. Chemistry-An Asian Journal,2018,13(2):158-163. doi: 10.1002/asia.201701400
    [36]
    Ma G, Ning G, Wei Q. S-doped carbon materials: Synthesis, properties and applications[J]. Carbon,2022,195:328-340. doi: 10.1016/j.carbon.2022.03.043
    [37]
    Taube H. Electron Transfer Reactions of Complex Ions in Solution[M]. Elsevier, 2012.
    [38]
    Bard A J. Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: The challenge[J]. Journal of the American Chemical Society,2010,132(22):7559-7567. doi: 10.1021/ja101578m
    [39]
    Zhang Y, Wang J G, Yu X, et al. Potential-dynamic surface chemistry controls the electrocatalytic processes of ethanol oxidation on gold surfaces[J]. ACS Energy Letters,2018,4(1):215-221.
    [40]
    Zhou H, Li Z, Ma L, et al. Electrocatalytic oxidative upgrading of biomass platform chemicals: From the aspect of reaction mechanism[J]. Chemical Communications,2022,58(7):897-907. doi: 10.1039/D1CC06254A
    [41]
    Horn E J, Rosen B R, Chen Y, et al. Scalable and sustainable electrochemical allylic C―H oxidation[J]. Nature,2016,533(7601):77-81. doi: 10.1038/nature17431
    [42]
    Wang D, Wang P, Wang S, et al. Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor[J]. Nature communications,2019,10(1):2796. doi: 10.1038/s41467-019-10928-0
    [43]
    Cha H G, Choi K S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell[J]. Nature chemistry,2015,7(4):328-333. doi: 10.1038/nchem.2194
    [44]
    Jiang N, You B, Boonstra R, et al. Integrating electrocatalytic 5-hydroxymethylfurfural oxidation and hydrogen production via Co ―P-derived electrocatalysts[J]. ACS Energy Letters,2016,1(2):386-390. doi: 10.1021/acsenergylett.6b00214
    [45]
    Deng X, Kang X, Li M, et al. Coupling efficient biomass upgrading with H2 production via bifunctional CuxS@NiCo-LDH core–shell nanoarray electrocatalysts[J]. Journal of Materials Chemistry A,2020,8(3):1138-1146. doi: 10.1039/C9TA06917H
    [46]
    Gao L, Liu Z, Ma J, et al. NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid[J]. Applied Catalysis B: Environmental,2020,261:118235. doi: 10.1016/j.apcatb.2019.118235
    [47]
    Zhou Z, Chen C, Gao M, et al. In situ anchoring of a Co3O4 nanowire on nickel foam: An outstanding bifunctional catalyst for energy-saving simultaneous reactions[J]. Green Chemistry,2019,21(24):6699-6706. doi: 10.1039/C9GC02880C
    [48]
    Chen R, Yang C, Zhou Z, et al. Electrochemically triggered chain reactions for the conversion of furan derivatives[J]. Angewandte Chemie International Edition,2021,60(14):7534-7539. doi: 10.1002/anie.202016601
    [49]
    Badalyan A, Stahl S S. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators[J]. Nature,2016,535(7612):406-410. doi: 10.1038/nature18008
    [50]
    Ju H K, Giddey S, Badwal S P S. The role of nanosized SnO2 in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis[J]. Electrochimica Acta,2017,229:39-47. doi: 10.1016/j.electacta.2017.01.106
    [51]
    Liu X, Han Y, Guo Y, et al. Electrochemical hydrogen generation by oxygen evolution reaction alternative anodic oxidation reactions[J]. Advanced Energy and Sustainability Research,2022,3(7):2200005. doi: 10.1002/aesr.202200005
    [52]
    Xiang K, Wu D, Deng X, et al. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide @ hydroxysulfide nanosheets electrocatalysts[J]. Advanced Functional Materials,2020,30(10):1909610. doi: 10.1002/adfm.201909610
    [53]
    Xiang K, Song Z, Wu D, et al. Bifunctional Pt–Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis[J]. Journal of Materials Chemistry A,2021,9(10):6316-6324. doi: 10.1039/D0TA10501E
    [54]
    Zhu B, Dong B, Wang F, et al. Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides[J]. Nature Communications,2023,14(1):1686. doi: 10.1038/s41467-023-37441-9
    [55]
    Monyoncho E A, Woo T K, Baranova E A. Ethanol electrooxidation reaction in alkaline media for direct ethanol fuel cells[J]. 2018.
    [56]
    Pagliaro M V, Bellini M, Bevilacqua M, et al. Carbon supported Rh nanoparticles for the production of hydrogen and chemicals by the electroreforming of biomass-derived alcohols[J]. RSC advances,2017,7(23):13971-13978. doi: 10.1039/C7RA00044H
    [57]
    Caravaca A, Sapountzi F M, de Lucas-Consuegra A, et al. Electrochemical reforming of ethanol–water solutions for pure H2 production in a PEM electrolysis cell[J]. International Journal of Hydrogen Energy,2012,37(12):9504-9513. doi: 10.1016/j.ijhydene.2012.03.062
    [58]
    Dai L, Qin Q, Zhao X, et al. Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co3O4 nanosheets as a highly selective anode catalyst[J]. ACS central science,2016,2(8):538-544. doi: 10.1021/acscentsci.6b00164
    [59]
    Bergmann A, Martinez-Moreno E, Teschner D, et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution[J]. Nature communications,2015,6(1):8625. doi: 10.1038/ncomms9625
    [60]
    Gao S, Lin Y, Jiao X, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature,2016,529(7584):68-71. doi: 10.1038/nature16455
    [61]
    Zhou Y, Shen Y, Xi J. Seed-mediated synthesis of PtxAuy@Ag electrocatalysts for the selective oxidation of glycerol[J]. Applied Catalysis B:Environmental,2019,245:604-612. doi: 10.1016/j.apcatb.2019.01.009
    [62]
    Frota Jr E F, de Barros V V S, de Araújo B R S, et al. Pt/C containing different platinum loadings for use as electrocatalysts in alkaline PBI-based direct glycerol fuel cells[J]. International Journal of Hydrogen Energy,2017,42(36):23095-23106. doi: 10.1016/j.ijhydene.2017.07.125
    [63]
    Simões M, Baranton S, Coutanceau C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration[J]. Applied Catalysis B:Environmental,2010,93(3-4):354-362. doi: 10.1016/j.apcatb.2009.10.008
    [64]
    Li Y, Wei X, Chen L, et al. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions[J]. Nature communications,2019,10(1):5335. doi: 10.1038/s41467-019-13375-z
    [65]
    Li Y, Wei X, Han S, et al. MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic solutions[J]. Angewandte Chemie,2021,133(39):21634-21642. doi: 10.1002/ange.202107510
    [66]
    Zheng J, Chen X, Zhong X, et al. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol[J]. Advanced Functional Materials,2017,27(46):1704169. doi: 10.1002/adfm.201704169
    [67]
    Zeng L, Chen Y, Sun M, et al. Cooperative RhO5/Ni (Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production[J]. Journal of the American Chemical Society, 2023, 145 (32): 17577-17587.
    [68]
    You B, Jiang N, Liu X, et al. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst[J]. Angewandte Chemie International Edition,2016,55(34):9913-9917. doi: 10.1002/anie.201603798
    [69]
    Gu K, Wang D, Xie C, et al. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation[J]. Angewandte Chemie,2021,133(37):20415-20420. doi: 10.1002/ange.202107390
    [70]
    Chadderdon D J, Xin L, Qi J, et al. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles[J]. Green Chemistry,2014,16(8):3778-3786. doi: 10.1039/C4GC00401A
    [71]
    Zhou C, Shi W, Wan X, et al. Oxidation of 5-hydroxymethylfurfural over a magnetic iron oxide decorated rGO supporting Pt nanocatalyst[J]. Catalysis Today,2019,330:92-100. doi: 10.1016/j.cattod.2018.05.037
    [72]
    Zhang N, Zou Y, Tao L, et al. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy[J]. Angewandte Chemie,2019,131(44):16042-16050. doi: 10.1002/ange.201908722
    [73]
    Zhu J, Hu L, Zhao P, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical reviews,2019,120(2):851-918.
    [74]
    Choi G B, Hong S, Wee J H, et al. Quantifying carbon edge sites on depressing hydrogen evolution reaction activity[J]. Nano Letters,2020,20(8):5885-5892. doi: 10.1021/acs.nanolett.0c01842
    [75]
    Liang Z, Hong Z, Xie M, et al. Recent progress of mesoporous carbons applied in electrochemical catalysis[J]. New Carbon Materials,2022,37(1):152-179. doi: 10.1016/S1872-5805(22)60575-4
    [76]
    Wang Y, Wang S, Li R, et al. A simple strategy for tridoped porous carbon nanosheet as superior electrocatalyst for bifunctional oxygen reduction and hydrogen evolution reactions[J]. Carbon,2020,162:586-594. doi: 10.1016/j.carbon.2020.03.011
    [77]
    Zheng Y, Jiao Y, Zhu Y, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature communications,2014,5(1):3783. doi: 10.1038/ncomms4783
    [78]
    Han Q, Cheng Z, Gao J, et al. Mesh-on-mesh graphitic-C3N4@graphene for highly efficient hydrogen evolution[J]. Advanced Functional Materials,2017,27(15):1606352. doi: 10.1002/adfm.201606352
    [79]
    Yang N, Chen Z, Zhao Z, et al. Electrochemical fabrication of ultrafine g-C3N4 quantum dots as a catalyst for the hydrogen evolution reaction[J]. New Carbon Materials,2022,37(2):392-399. doi: 10.1016/S1872-5805(21)60045-8
    [80]
    Huang B, Liu Y, Xie Z. Biomass derived 2D carbons via a hydrothermal carbonization method as efficient bifunctional ORR/HER electrocatalysts[J]. Journal of Materials Chemistry A,2017,5(45):23481-23488. doi: 10.1039/C7TA08052B
    [81]
    Hansen J N, Prats H, Toudahl K K, et al. Is there anything better than Pt for HER?[J]. ACS energy letters,2021,6(4):1175-1180. doi: 10.1021/acsenergylett.1c00246
    [82]
    Wang C, Hu F, Yang H, et al. 1. 82% Pt/N, P co-doped carbon overwhelms 20 wt. % Pt/C as a high-efficiency electrocatalyst for hydrogen evolution reaction[J]. Nano Research,2017,10:238-246. doi: 10.1007/s12274-016-1281-9
    [83]
    Deng J, Ren P, Deng D, et al. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction[J]. Energy & Environmental Science,2014,7(6):1919-1923.
    [84]
    Chen Y, Xu S, Li Y, et al. FeS2 nanoparticles embedded in reduced graphene oxide toward robust, high-performance electrocatalysts[J]. Advanced Energy Materials,2017,7(19):1700482. doi: 10.1002/aenm.201700482
    [85]
    Dai H, Yuan X, Jiang L, et al. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective[J]. Coordination Chemistry Reviews,2021,441:213985. doi: 10.1016/j.ccr.2021.213985
    [86]
    Wen X, Guan J. Recent progress on MOF-derived electrocatalysts for hydrogen evolution reaction[J]. Applied Materials Today,2019,16:146-168. doi: 10.1016/j.apmt.2019.05.013
    [87]
    Zhang Y, Yun S, Sun M, et al. Implanted metal-nitrogen active sites enhance the electrocatalytic activity of zeolitic imidazolate zinc framework-derived porous carbon for the hydrogen evolution reaction in acidic and alkaline media[J]. Journal of Colloid and Interface Science,2021,604:441-457. doi: 10.1016/j.jcis.2021.06.152
    [88]
    Lyu D, Du Y, Huang S, et al. Highly efficient multifunctional Co–N–C electrocatalysts with synergistic effects of Co–N moieties and Co metallic nanoparticles encapsulated in a N-doped carbon matrix for water-splitting and oxygen redox reactions[J]. ACS applied materials & interfaces,2019,11(43):39809-39819.
    [89]
    Zhang L, Liu W, Dou Y, et al. The role of transition metal and nitrogen in metal–N–C composites for hydrogen evolution reaction at universal pHs[J]. The Journal of Physical Chemistry C,2016,120(51):29047-29053. doi: 10.1021/acs.jpcc.6b11782
    [90]
    Yu J, Zhou W, Xiong T, et al. Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction[J]. Nano Research,2017,10:2599-2609. doi: 10.1007/s12274-017-1462-1
    [91]
    Li Z, Yan Y, Xu S M, et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst[J]. Nature Communications,2022,13(1):147. doi: 10.1038/s41467-021-27806-3
    [92]
    Luo L, Xu L, Wang Q, et al. Recent Advances in External Fields‐Enhanced Electrocatalysis[J]. Advanced Energy Materials,2023,13:2301276. doi: 10.1002/aenm.202301276
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article Views(209) PDF Downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return