Volume 39 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
CHEN Yu-xiang, ZHAO Xiu-hui, DONG Peng, ZHANG Ying-jie, ZOU Yu-qin, WANG Shuang-yin. Carbon-based electrocatalysts for water splitting at high-current-densities: A review. New Carbon Mater., 2024, 39(1): 1-16. doi: 10.1016/S1872-5805(24)60831-0
Citation: CHEN Yu-xiang, ZHAO Xiu-hui, DONG Peng, ZHANG Ying-jie, ZOU Yu-qin, WANG Shuang-yin. Carbon-based electrocatalysts for water splitting at high-current-densities: A review. New Carbon Mater., 2024, 39(1): 1-16. doi: 10.1016/S1872-5805(24)60831-0

Carbon-based electrocatalysts for water splitting at high-current-densities: A review

doi: 10.1016/S1872-5805(24)60831-0
Funds:  This work was supported by China Postdoctoral Science Foundation (2020M672471)
More Information
  • Author Bio:

    陈玉祥,教授. E-mail:chenyux@kust.edu.cn

  • Corresponding author: CHEN Yu-xiang, Professor. E-mail: chenyux@kust.edu.cn; ZOU Yu-qin, Professor. E-mail: yuqin_zou@hnu.edu.cn
  • Received Date: 2023-10-16
  • Accepted Date: 2023-11-29
  • Rev Recd Date: 2023-11-29
  • Available Online: 2023-12-05
  • Publish Date: 2024-02-01
  • Electrocatalytic water splitting is a promising strategy to generate hydrogen using renewable energy under mild conditions. Carbon-based materials have attracted attention in electrocatalytic water splitting because of their distinctive features such as high specific area, high electron mobility and abundant natural resources. Hydrogen produced by industrial electrocatalytic water splitting in a large quantity requires electrocatalysis at a low overpotential at a large current density. Substantial efforts focused on fundamental research have been made, while much less attention has been paid to the high-current-density test. There are many distinct differences in electrocatalysis to split water using low and high current densities such as the bubble phenomenon, local environment around active sites, and stability. Recent research progress on carbon-based electrocatalysts for water splitting at low and high current densities is summarized, significant challenges and prospects for carbon-based electrocatalysts are discussed, and promising strategies are proposed.
  • loading
  • [1]
    Chen M, Kitiphatpiboon N, Feng C, et al. Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical Review[J]. eScience,2023,3(2):100111. doi: 10.1016/j.esci.2023.100111
    [2]
    Ye K, Chai Z, Gu J, et al. BiOI–BiVO4 photoanodes with significantly improved solar water splitting capability: p-n junction to expand solar adsorption range and facilitate charge carrier dynamics[J]. Nano Energy,2015,18:222-231. doi: 10.1016/j.nanoen.2015.10.018
    [3]
    Chia X, Pumera M J N C. Characteristics and performance of two-dimensional materials for electrocatalysis[J]. Nature Catalysis,2018,1(12):909-921. doi: 10.1038/s41929-018-0181-7
    [4]
    Kou T, Wang S, Li J L. Perspective on high-rate alkaline water splitting[J]. ACS Materials Letters,2021,3(2):224-234. doi: 10.1021/acsmaterialslett.0c00536
    [5]
    Ayers K J. High efficiency pem water electrolysis: Enabled by advanced catalysts, membranes, and processes[J]. Current Opinion in Chemical Engineering,2021,33:100719. doi: 10.1016/j.coche.2021.100719
    [6]
    Wang J, Gao Y, Kong H, et al. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances[J]. Chemical Society Reviews,2020,49(24):9154-9196. doi: 10.1039/D0CS00575D
    [7]
    Yang M, Li Y, Dong C L, et al. Correlating the valence state with the adsorption behavior of a Cu-based electrocatalyst for furfural oxidation with anodic hydrogen production reaction[J]. Advanced Materials,2023,35(39):2304203. doi: 10.1002/adma.202304203
    [8]
    Yu X, Yu Z Y, Zhang X L, et al. "Superaerophobic" nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities[J]. Journal of the American Chemical Society,2019,141(18):7537-7543. doi: 10.1021/jacs.9b02527
    [9]
    Sun H, Xu X, Kim H, et al. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications[J]. Energy Environmental Materials,2023,6(5):e12441. doi: 10.1002/eem2.12441
    [10]
    Gao H, Liu J, Zhang Z, et al. Electrochemical etching induced high-valence cobalt with defects site for boosting electrochemical water splitting[J]. Chemical Engineering Journal,2023,463:142224. doi: 10.1016/j.cej.2023.142224
    [11]
    Kong Z, Maswadeh Y, Vargas J, et al. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions[J]. Journal of the American Chemical Society,2020,142(3):1287-1299. doi: 10.1021/jacs.9b10239
    [12]
    Tao L, Wang Y, Zou Y, et al. Charge transfer modulated activity of carbon-based electrocatalysts[J]. Advanced Energy Materials,2019,10(11):1901227.
    [13]
    Zhang Y, Liu H, Zhao S, et al. Evolution of defects in electrocatalysts[J]. Advanced Materials,2023,35(9):e2209680. doi: 10.1002/adma.202209680
    [14]
    Jia Y, Yao X. Defects in carbon-based materials for electrocatalysis: Synthesis, recognition, and advances[J]. Account of Chemical Research,2023,56(8):948-958. doi: 10.1021/acs.accounts.2c00809
    [15]
    Zhang J, Xia Z, Dai L. Carbon-based electrocatalysts for advanced energy conversion and storage[J]. Science Advances,2015,1(7):e1500564. doi: 10.1126/sciadv.1500564
    [16]
    Wang J, Kong H, Zhang J, et al. Carbon-based electrocatalysts for sustainable energy applications [J]. Progress in Materials Science 2021, 116: 100717.
    [17]
    Huang Z F, Song J, Dou S, et al. strategies to break the scaling relation toward enhanced oxygen electrocatalysis [J]. Matter 2019, 1 (6): 1494-1518.
    [18]
    Wei C, Rao R R, Peng J, et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells[J]. Advanced Materials,2019,31(31):1806296. doi: 10.1002/adma.201806296
    [19]
    Guo L Y, Li J F, Lu Z W, et al. Biomass-derived carbon-based multicomponent integration catalysts for electrochemical water splitting[J]. ChemSusChem,2023,16(17):e202300214. doi: 10.1002/cssc.202300214
    [20]
    Salah A, Zhang L, Tan H, et al. Advanced Ru/Ni/WC@ NPC multi-interfacial electrocatalyst for efficient, sustainable hydrogen and chlor-alkali co-production[J]. Advanced Energy Materials,2022,12(21):2200332. doi: 10.1002/aenm.202200332
    [21]
    Darband G B, Aliofkhazraei M, Shanmugam S. Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting[J]. Renewable and Sustainable Energy Reviews,2019,114:109300. doi: 10.1016/j.rser.2019.109300
    [22]
    Luo Y, Tang L, Khan U, et al. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density[J]. Nature Communications,2019,10(1):269. doi: 10.1038/s41467-018-07792-9
    [23]
    Luo Y, Zhang Z, Chhowalla M, et al. Recent advances in the design of electrocatalysts for high-current-density water splitting[J]. Advanced Materials,2022,34(16):e2108133. doi: 10.1002/adma.202108133
    [24]
    Zhao Z L, Wang Q, Huang X, et al. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media[J]. Energy Environmental Science,2020,13(12):5143-5151. doi: 10.1039/D0EE01960G
    [25]
    Zhu J, Guo Y, Liu F, et al. Regulative electronic states around ruthenium/ruthenium disulphide heterointerfaces for efficient water splitting in acidic media[J]. Angewandte Chemie International Edition,2021,133(22):12436-12442.
    [26]
    Wang Y, Jiao Y, Yan H, et al. Vanadium-incorporated CoP2 with lattice expansion for highly efficient acidic overall water splitting[J]. Angewandte Chemie International Edition,2022,134(12):e202116233.
    [27]
    Yang J, Mohmad A R, Wang Y, et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution[J]. Nature Materials,2019,18(12):1309-1314. doi: 10.1038/s41563-019-0463-8
    [28]
    Xu X X, Zhang N C, Wang J Y, et al. The synthesis of iron-nitrogen sites embedded in electrospun carbon nanofibers with an excellent oxygen reduction reaction activity in alkaline/acidic media[J]. New Carbon Mater,2023,38(1):154-161.
    [29]
    Yang F, Luo Y, Yu Q, et al. A durable and efficient electrocatalyst for saline water splitting with a current density exceeding 2000 mA cm−2[J]. Advanced Functional Materials,2021,31(21):2010367. doi: 10.1002/adfm.202010367
    [30]
    Shinagawa T, Garcia-Esparza A T, Takanabe K J S R. Insight on tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J]. Scientific Reports,2015,5(1):13801. doi: 10.1038/srep13801
    [31]
    Bai X, Pang Q Q, Du X, et al. Integrating runi alloy in s-doped defective carbon for efficient hydrogen evolution in both acidic and alkaline media[J]. Chemical Engineering Journal,2021,417:129319. doi: 10.1016/j.cej.2021.129319
    [32]
    Li L, Wang P, Shao Q, et al. Metallic nanostructures with low dimensionality for electrochemical water splitting[J]. Chemical Society Reviews,2020,49(10):3072-3106. doi: 10.1039/D0CS00013B
    [33]
    Akbar K, Hussain S, Truong L, et al. Induced superhydrophobicity onto a non-super aerophobic catalytic surface for enhanced hydrogen evolution reaction[J]. ACS Applied Materials Interfaces,2017,9(50):43674-43680. doi: 10.1021/acsami.7b13918
    [34]
    García de Arquer F P, Dinh C T, Ozden A, et al. CoP2 electrolysis to multicarbon products at activities more remarkable than 1 A cm−2[J]. Science,2020,367(6478):661-666. doi: 10.1126/science.aay4217
    [35]
    Ifkovits Z P, Evans J M, Meier M C, et al. Decoupled electrochemical water-splitting systems: A review and perspective[J]. Energy Environmental Science,2021,14(9):4740-4759. doi: 10.1039/D1EE01226F
    [36]
    Wang X, Jia Y, Mao X, et al. A Directional synthesis for topological defectin carbon[J]. Chem,2020,6:2009-2023. doi: 10.1016/j.chempr.2020.05.010
    [37]
    Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760-764. doi: 10.1126/science.1168049
    [38]
    Tsounis C, Subhash B, Priyank V, et al. Pt single atom electrocatalysts at graphene edges for efficient alkaline hydrogen evolution[J]. Advanced Functional Materials,2022,32:2203067. doi: 10.1002/adfm.202203067
    [39]
    Wang J, Xu F, Jin H, et al. Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications[J]. Advanced Materials,2017,29 (4):1605838. doi: 10.1002/adma.201605838
    [40]
    Gao K, Wang B, Tao L, et al. Efficient metal-free lectrocatalysts from N-doped carbon nanomaterials: Mono doping and Co-doping[J]. Advanced Materials,2019,31:1805121. doi: 10.1002/adma.201805121
    [41]
    Yang L, Shui J, Du L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present and future[J]. Advanced Materials,2019,31:1804799. doi: 10.1002/adma.201804799
    [42]
    Jia Y, Zhang L, Du A, et al. Defect graphene as a functional catalyst for electrochemical reactions[J]. Advanced Materials,2016,28:9532-9538. doi: 10.1002/adma.201602912
    [43]
    Lee G, Wang C, Yoon E, et al. Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers[J]. Physical Review Letters,2005,95:205501. doi: 10.1103/PhysRevLett.95.205501
    [44]
    Lee G, Wang C, Yoon E, et al. The formation of pentagon heptagon pair defect by the reconstruction of vacancy defects in carbon nanotube[J]. Applied Physics Letters,2008,92:043104. doi: 10.1063/1.2837632
    [45]
    Tao L, Wang Q, Dou S, et al. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction[J]. Chemical Communication,2016,52:2764-2767. doi: 10.1039/C5CC09173J
    [46]
    Deng J, Li M, Wang Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion[J]. Green Chemistry,2016,18:4824-54. doi: 10.1039/C6GC01172A
    [47]
    Hasegawa G, Deguchi T, Kanamori K, et al. High-level doping of nitrogen, phosphorus, and sulfur into activated carbon monoliths and their electrochemical capacitances[J]. Chemistry of Materials,2015,27:4703-12. doi: 10.1021/acs.chemmater.5b01349
    [48]
    Cui H, Zhou Z, Jia D. Heteroatom-doped graphene as electrocatalysts for air cathodes[J]. Materials Horizons,2017,4:7-19.
    [49]
    Zhao Z, Xia Z, Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions [J]. ACS Catalysis, 2016, 6: 1553-1558
    [50]
    Yang H, Miao J, Hung S, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal free bifunctional electrocatalyst[J]. Science Advances,2016,2:e1501122. doi: 10.1126/sciadv.1501122
    [51]
    Tian Y, Ye Y, Wang X, et al. Three-dimensional N doped, plasma-etched graphene: Highly active metal-free catalyst for hydrogen evolution reaction[J]. Applied Catalysis A-General,2017,529:127-133. doi: 10.1016/j.apcata.2016.10.021
    [52]
    Wang Z, Hao X, Jiang Z, et al. C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society,2015,137:15070-3. doi: 10.1021/jacs.5b09021
    [53]
    Zheng Y, Jiao Y, Jaroniec M, et al. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory[J]. Angewandte Chemie International Edition,2015,54:52-65. doi: 10.1002/anie.201407031
    [54]
    Su J, Yang Y, Xia G, et al. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media[J]. Nature Communications,2017,8 (1):14969. doi: 10.1038/ncomms14969
    [55]
    Deng J, Ren P, Deng D, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angewandte Chemie International Edition,2015,54:2100-4. doi: 10.1002/anie.201409524
    [56]
    Jin H, Wang J, Su D, et al. In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution[J]. Journal of the American Chemical Society,2015,137:2688-94. doi: 10.1021/ja5127165
    [57]
    Su J, Xia G, Li R, et al. Co3ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts[J]. Journal of Materials Chemistry A,2016,4:9204-12. doi: 10.1039/C6TA00945J
    [58]
    Elumeeva K, Masa J, Medina D, et al. Cobalt boride modified with N-doped carbon nanotubes as a high-performance bi functional oxygen electrocatalyst[J]. Journal of Materials Chemistry A,2017,5:21122-9. doi: 10.1039/C7TA06995B
    [59]
    Xiao J, Zhao C, Hu C, et al. Pudding-typed cobalt sulfides/nitrogen and sulfur dual-doped hollow carbon spheres as a highly efficient and stable oxygen reduction electrocatalyst[J]. Journal of Power Sources,2017,348:183-92. doi: 10.1016/j.jpowsour.2017.03.011
    [60]
    Chen M, Qi J, Guo D, et al. Facile synthesis of sponge-like Ni3N/NC for electrocatalytic water oxidation[J]. Chemical Communication,2017,53:9566-9. doi: 10.1039/C7CC05172G
    [61]
    Hou C, Cao S, Fu W, et al. Ultrafine CoP nanoparticles supported on carbon nanotubes as highly active electrocatalyst for both oxygen and hydrogen evolution in basic media[J]. ACS Applied Materials Interfaces,2015,7:28412-9. doi: 10.1021/acsami.5b09207
    [62]
    Meng T, Qin J, Wang S, et al. In situ coupling of Co0.85Se and N-doped carbon via one-step selenization of metal-organic frameworks as a trifunctional catalyst for overall water splitting and Zn-air batteries[J]. Journal of Materials Chemistry A,2017,5:7001-14. doi: 10.1039/C7TA01453H
    [63]
    Xiong P, Ma R, Sakai N, et al. Unilamellar metallic MoS2/graphene superlattice for efficient sodium storage and hydrogen evolution[J]. ACS Energy Letters,2018,3:997-1005. doi: 10.1021/acsenergylett.8b00110
    [64]
    Zhang C, Pu Z, Amiinu I, et al. Co2P quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder free properties for efficient hydrogen evolution reactions[J]. Nanoscale,2018,10:2902-7. doi: 10.1039/C7NR08148K
    [65]
    Zhang Y, Xia X, Cao X, et al. Ultrafine metal nanoparticles/N-doped porous carbon hybrids coated on carbon fibers as flexible and binder-free water splitting catalysts[J]. Advanced Energy Materials,2017,7:1700220. doi: 10.1002/aenm.201700220
    [66]
    Zhou P, Lv X, Tao S, et al. Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation[J]. Advanced Materials,2022,34(42):e2204089. doi: 10.1002/adma.202204089
    [67]
    Gupta S, Patel M K, Miotello A, et al. Metal boride-based catalysts for electrochemical water-splitting: A review[J]. Advanced Functional Materials,2019,30(1):1906481.
    [68]
    Lu Z, Li Y, Lei X, et al. Nanoarray based “superhydrophobic” surfaces for gas evolution reaction electrodes[J]. Materials Horizons,2015,2(3):294-298. doi: 10.1039/C4MH00208C
    [69]
    Zhang P, Wang S, Wang S, et al. Superwetting surfaces under different media: Effects of surface topography on wettability[J]. Small,2015,11(16):1939-1946. doi: 10.1002/smll.201401869
    [70]
    Li W, Zhao L, Jiang X, et al. , Confinement engineering of electrocatalyst surfaces and interfaces[J]. Advanced Functional Materials,2022,32(46):2207727. doi: 10.1002/adfm.202207727
    [71]
    Huang Y, Liu M, Wang J, et al. Controllable underwater oil-adhesion-interface films assembled from nonspherical particles[J]. Advanced Functional Materials,2011,21(23):4436-4441. doi: 10.1002/adfm.201101598
    [72]
    Ling W Y L, Lu G, Ng T. Increased stability and size of a bubble on a superhydrophobic surface[J]. Langmuir,2011,27(7):3233-3237. doi: 10.1021/la104982p
    [73]
    Ma B, Yang Z, Chen Y, et al. Nickel cobalt phosphide with a three-dimensional nanostructure is a highly efficient electrocatalyst for hydrogen evolution reactions in both acidic and alkaline electrolytes[J]. Nano Research,2019,12:375-380. doi: 10.1007/s12274-018-2226-2
    [74]
    George J E, Chidangil S, George S. Recent progress in fabricating superaerophobic and superaerophilic surfaces[J]. Advanced Materials Interfaces,2017,4(9):1601088. doi: 10.1002/admi.201601088
    [75]
    Wen L, Tian Y, Jiang L, et al. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie International Edition,2015,54(11):3387-3399. doi: 10.1002/anie.201409911
    [76]
    Yao X, Song Y, Jiang L et al. Applications of bio‐inspired special wettable surfaces[J]. Advanced Materials,2011,23(6):719-734. doi: 10.1002/adma.201002689
    [77]
    Dukovic J, Tobias C. The influence of attached bubbles on the potential drop and current distribution at gas-evolving electrodes[J]. Journal of the Electrochemical Society,1987,134(2):331. doi: 10.1149/1.2100456
    [78]
    Xu H G, Zhang X Y, Ding Y, et al. Rational design of hydrogen evolution reaction electrocatalysts for commercial alkaline water electrolysis[J]. Small Structures, 2023: 2200404.
    [79]
    Lu Z, Zhu W, Yu X, et al. Ultrahigh hydrogen evolution performance of under-water “superhydrophobic” MoS2 nanostructured electrodes[J]. Advanced Materials,2014,26(17):2683-2687. doi: 10.1002/adma.201304759
    [80]
    Wang M, Wang Z, Guo Z J. Water electrolysis enhanced by super gravity field for hydrogen production[J]. International Journal of Hydrogen Energy,2010,35(8):3198-3205. doi: 10.1016/j.ijhydene.2010.01.128
    [81]
    Wang C C, Chen C Y. Water electrolysis in the presence of an ultrasonic field[J]. Electrochimica Acta,2009,54(15):3877-3883. doi: 10.1016/j.electacta.2009.01.087
    [82]
    Liu G, Wong W S Y, Kraft M, et al. Wetting-regulated gas-involving (photo) electrocatalysis: biomimetics in energy conversion[J]. Chemical Society Reviews,2021,50(18):10674-10699. doi: 10.1039/D1CS00258A
    [83]
    Wang J, Yang Q, Wang M, et al. Rose petals with a novel and steady air bubble pinning effect in aqueous media[J]. Soft Matter,2012,8(7):2261-2266. doi: 10.1039/c2sm06705f
    [84]
    Luo J, Zhang Q, Garcia-Martinez J, et al. Adsorptive and acidic properties, reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type manganese oxides as oxidation catalysts[J]. Journal of the American Chemical Society,2008,130(10):3198-3207. doi: 10.1021/ja077706e
    [85]
    Jung J, Ku J, Park Y S, et al. Advances in ion conducting membranes and binders for high temperature polymer electrolyte membrane fuel cells[J]. Polymer Reviews,2022,62(4):789-825. doi: 10.1080/15583724.2022.2025602
    [86]
    Wang K, Tang F, Yao X Z, et al. Chemical vapor deposition of two-dimensional transition metal sulfides on carbon paper for electrocatalytic hydrogen evolution[J]. New Carbon Materials,2022,37(6):1183-1191. doi: 10.1016/S1872-5805(21)60078-1
    [87]
    Yu J, Garcés-Pineda F A, González-Cobos J, et al. Sustainable oxygen evolution electrocatalysis in aqueous 1 M H2SO4 with earth abundant nanostructured Co3O4[J]. Nature Communications,2022,13(1):4341. doi: 10.1038/s41467-022-32024-6
    [88]
    Cui X, Ren P, Ma C, et al. Robust interface ru centers for high‐performance acidic oxygen evolution[J]. Advanced Materials,2020,32(25):1908126. doi: 10.1002/adma.201908126
    [89]
    Lutterman D A, Surendranath Y, Nocera D G. A self-healing oxygen-evolving catalyst[J]. Journal of the American Chemical Society,2009,131(11):3838-3839. doi: 10.1021/ja900023k
    [90]
    Chen T W, Kalimuthu P, Veerakumar P, et al. Review-recent advances in the development of porous carbon-based electrocatalysts for water-splitting reaction [J]. Journal of The Electrochemical Society, 2022, 169 (5):
    [91]
    Chong L, Gao G, Wen J, et al. La-and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis[J]. Science,2023,380(6645):609-616. doi: 10.1126/science.ade1499
    [92]
    Möller S, Barwe S, Masa J, et al. Online monitoring of electrochemical carbon corrosion in alkaline electrolytes by differential electrochemical mass spectrometry[J]. Angewandte Chemie International Edition,2020,59(4):1585-1589. doi: 10.1002/anie.201909475
    [93]
    Iwata R, Zhang L, Wilke K L, et al. Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting[J]. Joule,2021,5(4):887-900. doi: 10.1016/j.joule.2021.02.015
    [94]
    Liu Y, Yang Z, Zou Y, et al. Interfacial micro-environment of electrocatalysis and its applications for organic electro-oxidation reaction[J]. Small, 2023: e2306488.
    [95]
    Zheng X, Shi X, Ning H, et al. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution[J]. Nature Communications,2023,14:4209. doi: 10.1038/s41467-023-39963-8
    [96]
    Khan M A, Al Attas T, Roy S, et al. Seawater electrolysis for hydrogen production: A solution looking for a problem[J]. Energy Environmental Science,2021,14(9):4831-4839. doi: 10.1039/D1EE00870F
    [97]
    Kwon Y, Schouten K J P, van der Waal J C, et al. Electrocatalytic conversion of furanic compounds[J]. ACS Catalysis,2016,6(10):6704-6717. doi: 10.1021/acscatal.6b01861
    [98]
    Pérez Gallent E, Figueiredo M C, Katsounaros I, et al. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions[J]. Electrochimica Acta,2017,227:77-84. doi: 10.1016/j.electacta.2016.12.147
    [99]
    Palkovits R, Delidovich I. Efficient utilization of renewable feedstocks: The role of catalysis and process design[J]. Philosophical transactions, Mathematical, Physical and Engineering sciences,2018,376(2110):2017006.
    [100]
    Hu L, Xu J, Zhou S, et al. Catalytic advances in the production and application of biomass-derived 2, 5-dihydroxymethylfuran[J]. ACS Catalysis,2018,8(4):2959-2980. doi: 10.1021/acscatal.7b03530
    [101]
    Mohle S, Zirbes M, Rodrigo E, et al. Modern electrochemical aspects for the synthesis of value-added organic products[J]. Angewandte Chemie International Edition,2018,57(21):6018-6041. doi: 10.1002/anie.201712732
    [102]
    Kubota S R, Choi K S. Electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation[J]. ChemSusChem,2018,11(13):2138-2145. doi: 10.1002/cssc.201800532
    [103]
    Zhou B, Shi J, Jiang Y, et al. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density[J]. Chinese Journal of Catalysis,2023,50:372-380. doi: 10.1016/S1872-2067(23)64446-8
    [104]
    Zhang Z, Huber G W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals[J]. Chemical Society Reviews,2018,47(4):1351-1390. doi: 10.1039/C7CS00213K
    [105]
    Dey A, Chroneos A, Braithwaite N S J, et al. Plasma engineering of graphene[J]. Applied Physics Reviews,2016,3(2):021301. doi: 10.1063/1.4947188
    [106]
    Román A M, Hasse J C, Medlin J W, et al. Elucidating acidic electro-oxidation pathways of furfural on platinum[J]. ACS Catalysis,2019,9(11):10305-10316. doi: 10.1021/acscatal.9b02656
    [107]
    Wang T, Tao L, Zhu X, et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction[J]. Nature Catalysis,2021,5(1):66-73. doi: 10.1038/s41929-021-00721-y
    [108]
    Chadderdon X H, Chadderdon D J, Pfennig T, et al. Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl)furfural for efficient production of biomass-derived monomers[J]. Green Chemistry,2019,21(22):6210-6219. doi: 10.1039/C9GC02264C
    [109]
    Zhang Y R, Wang B X, Qin L, et al. A non-noble bimetallic alloy in the highly selective electrochemical synthesis of the biofuel 2, 5-dimethylfuran from 5-hydroxymethylfurfural[J]. Green Chemistry,2019,21(5):1108-1113. doi: 10.1039/C8GC03689F
    [110]
    Young E R, Nocera D G, Bulović V. Direct formation of a water oxidation catalyst from thin-film cobalt[J]. Energy Environmental Science,2010,3(11):1726-1728. doi: 10.1039/c0ee00177e
    [111]
    McAlpin J G, Surendranath Y, Dinca M, et al. EPR evidence for Co (IV) species produced during water oxidation at neutral pH[J]. Journal of the American Chemical Society,2010,132(20):6882-6883. doi: 10.1021/ja1013344
    [112]
    Du W, Wang Q, Saxner D, et al. Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction[J]. Journal of the American Chemical Society,2011,133(38):15172-83. doi: 10.1021/ja205649z
    [113]
    Sardar K, Ball S C, Sharman J D B, et al. Bismuth iridium oxide oxygen evolution catalyst from hydrothermal synthesis[J]. Chemistry of Materials,2012,24(21):4192-4200. doi: 10.1021/cm302468b
    [114]
    Bediako D K, Lassalle Kaiser B, Surendranath Y, et al. Structure-activity correlations in a nickel-borate oxygen evolution catalyst[J]. Journal of the American Chemical Society,2012,134(15):6801-9. doi: 10.1021/ja301018q
    [115]
    Leonard K C, Bard A J. The study of multireactional electrochemical interfaces via a tip generation/substrate collection mode of scanning electrochemical microscopy: The hydrogen evolution reaction for Mn in acidic solution[J]. Journal of the American Chemical Society,2013,135(42):15890-6. doi: 10.1021/ja407395m
    [116]
    Chu X, Huang K, Han M, et al. Self-construction of magnetic hollow La0.7Sr0.3MnO3 microspheres with complex units[J]. Inorganic Chemistry,2013,52(8):4130-2. doi: 10.1021/ic400296b
    [117]
    Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society,2011,133(19):7296-7299. doi: 10.1021/ja201269b
    [118]
    Hinnemann B, Moses P G, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society,2005,127(15):5308-5309. doi: 10.1021/ja0504690
    [119]
    Xu Y T, Xiao X, Ye Z M, et al. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution[J]. Journal of the American Chemical Society,2017,139(15):5285-5288. doi: 10.1021/jacs.7b00165
    [120]
    Wiechen M, Najafpour M M, Allakhverdiev S I, et al. Water oxidation catalysis by manganese oxides: Learning from evolution[J]. Energy Environmental Science,2014,7:2203-2212. doi: 10.1039/c4ee00681j
    [121]
    Huynh M, Bediako D K, Nocera D G. A functionally stable manganese oxide oxygen evolution catalyst in acid[J]. Journal of the American Chemical Society,2014,136(16):6002-10. doi: 10.1021/ja413147e
    [122]
    Sivanantham A, Ganesan P, Vinu A, et al. Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media[J]. ACS Catalysis,2019,10(1):463-493.
    [123]
    Das B, Rahaman A, Shatskiy A, et al. The impact of ligand carboxylates on electrocatalyzed water oxidation[J]. Accounts of Chemical Research,2021,54(17):3326-3337. doi: 10.1021/acs.accounts.1c00298
    [124]
    Feng J X, Tong S Y, Tong Y X, et al. Pt-like hydrogen evolution electrocatalysis on Pani/CoP hybrid nanowires by weakening the shackles of hydrogen ions on the surfaces of catalysts[J]. Journal of the American Chemical Society,2018,140(15):5118-5126. doi: 10.1021/jacs.7b12968
    [125]
    Zhong J Q, Yan K J, Yang J, et al. Microenvironment alters the oxygen reduction activity of metal/N/C catalysts at the triple-phase boundary[J]. ACS Catalysis,2022,12(15):9003-9010. doi: 10.1021/acscatal.2c00362
    [126]
    Sun J, Xue H, Lu L, et al. Atomic-level modulation of local coordination environment at Fe single-atom sites for enhanced oxygen reduction[J]. Applied Catalysis B: Environmental,2022,313:121429. doi: 10.1016/j.apcatb.2022.121429
    [127]
    Chen C, Zhu X, Wen X, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions[J]. Nature Chemistry,2020,12(8):717-724. doi: 10.1038/s41557-020-0481-9
    [128]
    May A S, Biddinger J. Strategies to control electrochemical hydrogenation and hydrogenolysis of furfural and minimize undesired side reactions[J]. ACS Catalysis,2020,10(5):3212-3221. doi: 10.1021/acscatal.9b05531
    [129]
    Li X, Zhang L, Wang S, et al. Recent advances in aqueous-phase catalytic conversions of biomass platform chemicals over heterogeneous catalysts[J]. Frontiers in Chemistry,2019,7:948.
    [130]
    Lu S, Shi Y, Zhou W, et al. Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation[J]. Journal of the American Chemical Society,2022,144(7):3250-3258. doi: 10.1021/jacs.1c13374
    [131]
    Andronescu C, Seisel S, Wilde P, et al. Influence of temperature and electrolyte concentration on the structure and catalytic oxygen evolution activity of nickel-iron layered double hydroxide[J]. Chemistry–A European Journal,2018,24(52):13773-13777. doi: 10.1002/chem.201803165
    [132]
    Liu W, Wang X, Qu J, et al. Computation-guided design and preparation of durable and efficient WC-Mo2C heterojunction for hydrogen evolution reaction[J]. Cell Reports Physical Science,2022,3(3):100784. doi: 10.1016/j.xcrp.2022.100784
    [133]
    Zhang B, Wang L, Cao Z, et al. High-valence metals improve oxygen evolution reaction performance by modulating 3D metal oxidation cycle energetics[J]. Nature Catalysis,2020,3(12):985-992. doi: 10.1038/s41929-020-00525-6
    [134]
    Wang F L, Zhang X Y, Zhou J C, et al. Amorphous-crystalline FeNi2S4@NiFe nanograsses with molten salt as an industrially promising electrocatalyst for oxygen evolution[J]. Inorganic Chemistry Frontiers,2022,9(9):2068-2080. doi: 10.1039/D2QI00003B
    [135]
    Feng K, Zhang D, Liu F, et al. Highly efficient oxygen evolution by a thermocatalytic process cascaded electrocatalysis over sulfur‐treated Fe‐based metal-organic‐frameworks[J]. Advanced Energy Materials,2020,10(16):2000184. doi: 10.1002/aenm.202000184
    [136]
    Chen C, Li S, Zhu X, et al. Balancing sub‐reaction activity to boost electrocatalytic urea synthesis using a metal‐free electrocatalyst[J]. Carbon Energy,2023,5(10):e345. doi: 10.1002/cey2.345
    [137]
    Tong Y, Wu J, Chen P, et al. Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution[J]. Journal of the American Chemical Society,2018,140(36):11165-11169. doi: 10.1021/jacs.8b06108
    [138]
    Chen N, Paek S Y, Lee J Y, et al. High-performance anion exchange membrane water electrolyzers with a current density of 7. 68 A cm−2 and a durability of 1000 hours[J]. Energy Environmental Science,2021,14(12):6338-6348. doi: 10.1039/D1EE02642A
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article Views(329) PDF Downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return