Volume 39 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
CHEN Zhao-yang, ZHAO Shu-ya, LUAN Xiao-yu, ZHENG Zhi-qiang, YAN Jia-yu, XUE Yu-rui. A Co3O4/graphdiyne heterointerface for efficient ammonia production from nitrates. New Carbon Mater., 2024, 39(1): 142-151. doi: 10.1016/S1872-5805(24)60834-6
Citation: CHEN Zhao-yang, ZHAO Shu-ya, LUAN Xiao-yu, ZHENG Zhi-qiang, YAN Jia-yu, XUE Yu-rui. A Co3O4/graphdiyne heterointerface for efficient ammonia production from nitrates. New Carbon Mater., 2024, 39(1): 142-151. doi: 10.1016/S1872-5805(24)60834-6

A Co3O4/graphdiyne heterointerface for efficient ammonia production from nitrates

doi: 10.1016/S1872-5805(24)60834-6
Funds:  This work was supported by the National Key Research and Development Project of China (2022YFA1204500, 2022YFA1204501, 2022YFA1204503, 2018YFA0703501), the Taishan Scholars Youth Expert Program of Shandong Province (tsqn201909050), and the Natural Science Foundation of Shandong Province (ZR2020ZD38, ZR2021JQ07)
More Information
  • Author Bio:

    陈朝阳,硕士研究生. E-mail:1677023168@qq.com

  • Corresponding author: XUE Yu-rui, Professor. E-mail: yrxue@sdu.edu.cn
  • Received Date: 2023-09-21
  • Accepted Date: 2023-12-19
  • Rev Recd Date: 2023-12-19
  • Available Online: 2023-12-22
  • Publish Date: 2024-02-01
  • The nitrate reduction reaction (NtRR) has been demonstrated to be a promising way for obtaining ammonia (NH3) by converting NO3 to NH3. Here we report the controlled synthesis of cobalt tetroxide/graphdiyne heterostructured nanowires (Co3O4/GDY NWs) by a simple two-step process including the synthesis of Co3O4 NWs and the following growth of GDY using hexaethynylbenzene as the precursor at 110 °C for 10 h. Detailed scanning electron microscopy, high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman characterization confirmed the synthesis of a Co3O4/GDY heterointerface with the formation of sp-C―Co bonds at the interface and incomplete charge transfer between GDY and Co, which provide a continuous supply of electrons for the catalytic reaction and ensure a rapid NtRR. Because of these advantages, Co3O4/GDY NWs had an excellent NtRR performance with a high NH3 yield rate (YNH3) of 0.78 mmol h−1 cm−2 and a Faraday efficiency (FE) of 92.45% at −1.05 V (vs. RHE). This work provides a general approach for synthesizing heterostructures that can drive high-performance ammonia production from wastewater under ambient conditions.
  • loading
  • [1]
    Ye T N, Park S W, Lu Y, et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst[J]. Nature,2020,583(7816):391-395. doi: 10.1038/s41586-020-2464-9
    [2]
    Suryanto B H R, Matuszek K, Choi J, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science,2021,372(6547):1187-1191. doi: 10.1126/science.abg2371
    [3]
    Chen G F, Yuan Y, Jiang H, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst[J]. Nature Energy,2020,5(8):605-613. doi: 10.1038/s41560-020-0654-1
    [4]
    Chen C, Zhu X, Wen X, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions[J]. Nature Chemistry,2020,12(8):717-724. doi: 10.1038/s41557-020-0481-9
    [5]
    Zheng X, Xue Y, Zhang C, et al. Controlled growth of multidimensional interface for high-selectivity ammonia production[J]. CCS Chemistry,2023,5:1653-1662. doi: 10.31635/ccschem.022.202202189
    [6]
    Zhao S, Zheng Z, Qi L, et al. Controlled growth of donor-bridge-acceptor interface for high-performance ammonia production[J]. Small,2022,18(13):2107136. doi: 10.1002/smll.202107136
    [7]
    Luan X, Qi L, Zheng Z, et al. In situ growth of a GDY–MnOx heterointerface for selective and efficient ammonia production[J]. Chemical Communications,2023,59(49):7611-7614. doi: 10.1039/D3CC01428B
    [8]
    Zheng X, Chen S, Li J, et al. Two-dimensional carbon graphdiyne: advances in fundamental and application research[J]. ACS nano,2023,17(15):14309-14346. doi: 10.1021/acsnano.3c03849
    [9]
    Huang C, Li Y, Wang N, et al. Progress in research into 2D graphdiyne-based materials[J]. Chemical Reviews,2018,118(16):7744-7803. doi: 10.1021/acs.chemrev.8b00288
    [10]
    Fang Y, Liu Y, Qi L, et al. 2D graphdiyne: An emerging carbon material[J]. Chemical Society Reviews,2022,51(7):2681-2709. doi: 10.1039/D1CS00592H
    [11]
    Chen S, Xue Y, Li Y. 2D graphdiyne, what’s next?[J]. Next Materials,2023,1(3):100031. doi: 10.1016/j.nxmate.2023.100031
    [12]
    He F, Li Y. Advances on theory and experiments of the energy applications in graphdiyne[J]. CCS Chemistry,2023,5(1):72-94. doi: 10.31635/ccschem.022.202202328
    [13]
    Zhao S, Chen Z, Liu H, et al. Graphdiyne‐based multiscale catalysts for ammonia synthesis[J]. ChemSusChem, 2023: e202300861.
    [14]
    Pan Y, Zhao C, Hu A, et al. Band engineering in heterostructure catalysts to achieve high-performance lithium-oxygen batteries[J]. Journal of Colloid and Interface Science,2023,635:138-147. doi: 10.1016/j.jcis.2022.12.121
    [15]
    Dastafkan K, Shen X, Hocking R K, et al. Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes[J]. Nature Communications,2023,14(1):547. doi: 10.1038/s41467-023-36100-3
    [16]
    Zhao J, Liu J, Li Z, et al. Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures[J]. Nature Communications,2023,14(1):1909. doi: 10.1038/s41467-023-37631-5
    [17]
    Xu D, Lin X, Li Q Y, et al. Boosting mass exchange between Pd/NC and MoC/NC dual junctions via electron exchange for cascade CO2 fixation[J]. Journal of the American Chemical Society,2022,144(12):5418-5423. doi: 10.1021/jacs.1c12986
    [18]
    Li W, Chen S, Zhong M, et al. Synergistic coupling of NiFe layered double hydroxides with Co-C nanofibers for high-efficiency oxygen evolution reaction[J]. Chemical Engineering Journal,2021,415:128879. doi: 10.1016/j.cej.2021.128879
    [19]
    Xie C, Yan D, Li H, et al. Defect chemistry in heterogeneous catalysis: Recognition, understanding, and utilization[J]. ACS Catalysis,2020,10(19):11082-11098. doi: 10.1021/acscatal.0c03034
    [20]
    Li Y, Yang L, He H, et al. In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production[J]. Nature Communications,2022,13(1):1355. doi: 10.1038/s41467-022-29076-z
    [21]
    Chen Y, Lin J, Pan Q, et al. Inter-metal interaction of dual-atom catalysts in heterogeneous catalysis[J]. Angewandte Chemie International Edition,2023,62(42):e202306469. doi: 10.1002/anie.202306469
    [22]
    Ye C, Zheng M, Li Z, et al. Electrical pulse induced one-step formation of atomically dispersed Pt on oxide clusters for ultra-low-yemperature zinc-air battery[J]. Angewandte Chemie International Edition,2022,61(51):e202213366. doi: 10.1002/anie.202213366
    [23]
    Ma Y, Qu H, Wang W, et al. Si/SiO2@ graphene superstructures for high-performance lithium-ion batteries[J]. Advanced Functional Materials,2023,33(8):2211648. doi: 10.1002/adfm.202211648
    [24]
    Yang Q, Jiang N, Shao Y, et al. Functional carbon materials addressing dendrite problems in metal batteries: Surface chemistry, multi-dimensional structure engineering, and defects[J]. Science China Chemistry,2022,65(12):2351-2368. doi: 10.1007/s11426-022-1397-2
    [25]
    Xie Y, Yu C, Ni L, et al. Carbon-hybridized hydroxides for energy conversion and storage: Interface chemistry and manufacturing[J]. Advanced Materials,2023,35(14):2209652. doi: 10.1002/adma.202209652
    [26]
    Chang J, Yu C, Song X, et al. AC-S-C linkage-triggered ultrahigh nitrogen‐doped carbon and the identification of active site in triiodide reduction[J]. Angewandte Chemie International Edition,2021,133(7):3631-3639.
    [27]
    Jia Y, Zhang L, Zhuang L, et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping[J]. Nature Catalysis,2019,2(8):688-695. doi: 10.1038/s41929-019-0297-4
    [28]
    Wang H F, Tang C, Zhao C X, et al. Emerging graphene derivatives and analogues for efficient energy electrocatalysis[J]. Advanced Functional Materials,2022,32(42):2204755. doi: 10.1002/adfm.202204755
    [29]
    Hu Y, Wu C, Pan Q, et al. Synthesis of γ-graphyne using dynamic covalent chemistry[J]. Nature Synthesis,2022,1(6):449-454. doi: 10.1038/s44160-022-00068-7
    [30]
    Xue Y, Huang B, Yi Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution[J]. Nature Communications,2018,9(1):1460. doi: 10.1038/s41467-018-03896-4
    [31]
    Liu Y, Gao Y, He F, et al. Controlled growth interface of charge transfer salts of nickel-7, 7, 8, 8-tetracyanoquinodimethane on surface of graphdiyne[J]. CCS Chemistry,2023,5(4):971-981. doi: 10.31635/ccschem.022.202202005
    [32]
    Zhao S, Xue Y, Wang Z, et al. Controllable growth of graphdiyne layered nanosheets for high-performance water oxidation[J]. Materials Chemistry Frontiers,2021,5(11):4153-4159. doi: 10.1039/D1QM00132A
    [33]
    Yu H, Xue Y, Hui L, et al. Graphdiyne-based metal atomic catalysts for synthesizing ammonia[J]. National Science Review,2021,8(8):nwaa213. doi: 10.1093/nsr/nwaa213
    [34]
    Fang Y, Xue Y, Hui L, et al. Graphdiyne@ Janus magnetite for photocatalytic nitrogen fixation[J]. Angewandte Chemie International Edition,2021,133(6):3207-3211. doi: 10.1002/anie.202012357
    [35]
    Wang Z, Zheng Z, Xue Y, et al. Acidic water oxidation on quantum dots of IrOx/graphdiyne[J]. Advanced Energy Materials,2021,11(32):2101138. doi: 10.1002/aenm.202101138
    [36]
    Liu Y, Xue Y, Yu H, et al. Graphdiyne ultrathin nanosheets for efficient water splitting[J]. Advanced Functional Materials,2021,31(16):2010112. doi: 10.1002/adfm.202010112
    [37]
    Gao Y, Xue Y, Liu T, et al. Bimetallic mixed clusters highly loaded on porous 2D graphdiyne for hydrogen energy conversion[J]. Advanced Science,2021,8(21):2102777. doi: 10.1002/advs.202102777
    [38]
    Zhang D, Xue Y, Zheng X, et al. Multi-heterointerfaces for selective and efficient urea production[J]. National Science Review,2023,10(2):nwac209. doi: 10.1093/nsr/nwac209
    [39]
    Gao Y, Xue Y, He F, et al. Controlled growth of a high selectivity interface for seawater electrolysis[J]. Proceedings of the National Academy of Sciences,2022,119(36):e2206946119. doi: 10.1073/pnas.2206946119
    [40]
    Gao Y, Xue Y, Qi L, et al. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water[J]. Nature Communications,2022,13(1):5227. doi: 10.1038/s41467-022-32937-2
    [41]
    Qi L, Zheng Z, Xing C, et al. 1D nanowire heterojunction electrocatalysts of MnCo2O4/GDY for efficient overall water splitting[J]. Advanced Functional Materials,2022,32(11):2107179. doi: 10.1002/adfm.202107179
    [42]
    Zhang C, Xue Y, Zheng X, et al. Loaded Cu-Er metal iso-atoms on graphdiyne for artificial photosynthesis[J]. Materials Today,2023,66:72-83. doi: 10.1016/j.mattod.2023.04.012
    [43]
    Zheng Z, Qi L, Gao Y, et al. Ir0/graphdiyne atomic interface for selective epoxidation[J]. National Science Review,2023,10(8):nwad156. doi: 10.1093/nsr/nwad156
    [44]
    Fu X, He F, Gao J, et al. Directly growing graphdiyne nanoarray cathode to integrate an intelligent solid Mg-moisture battery[J]. Journal of the American Chemical Society,2022,145(5):2759-2764. doi: 10.1021/jacs.2c11409
    [45]
    Hui L, Zhang X, Xue Y, et al. Highly dispersed platinum chlorine atoms anchored on gold quantum dots for a highly efficient electrocatalyst[J]. Journal of the American Chemical Society,2022,144(4):1921-1928. doi: 10.1021/jacs.1c12310
    [46]
    Luan X, Qi L, Zheng Z, et al. Step by step induced growth of zinc-metal interface on graphdiyne for aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition,2023,62(8):e202215968. doi: 10.1002/anie.202215968
    [47]
    Fang Y, Xue Y, Li Y, et al. Graphdiyne interface engineering: highly active and selective ammonia synthesis[J]. Angewandte Chemie International Edition,2020,59(31):13021-13027. doi: 10.1002/anie.202004213
    [48]
    Yang Q, Li L, Hussain T, et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries[J]. Angewandte Chemie International Edition,2022,134(6):e202112304.
    [49]
    Yang Q, Guo Y, Yan B, et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes[J]. Advanced Materials,2020,32(25):2001755. doi: 10.1002/adma.202001755
    [50]
    Pan C, Wang C, Zhao X, et al. Neighboring sp-hybridized carbon participated molecular oxygen activation on the interface of sub-nanocluster CuO/graphdiyne[J]. Journal of the American Chemical Society,2022,144(11):4942-4951. doi: 10.1021/jacs.1c12772
    [51]
    Shi G, Xie Y, Du L, et al. Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4[J]. Angewandte Chemie International Edition,2022,134(23):e202203569.
    [52]
    Wu L, Dong Y, Zhao J, et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes[J]. Advanced Materials,2019,31(14):1807981. doi: 10.1002/adma.201807981
    [53]
    Liu J C, Xiao H, Zhao X K, et al. Computational prediction of graphdiyne-supported three-atom single-cluster catalysts[J]. CCS Chemistry,2023,5(1):152-163. doi: 10.31635/ccschem.022.202201796
    [54]
    Yu W, Song G, Lv F, et al. Recent advances in graphdiyne materials for biomedical applications[J]. Nano Today,2022,46:101616. doi: 10.1016/j.nantod.2022.101616
    [55]
    Gao N, Zeng H, Wang X, et al. Graphdiyne: A new carbon allotrope for electrochemiluminescence[J]. Angewandte Chemie International Edition,2022,61(28):e202204485. doi: 10.1002/anie.202204485
    [56]
    Gao X, Liu H, Wang D, et al. Graphdiyne: Synthesis, properties, and applications[J]. Chemical Society Reviews,2019,48(3):908-936. doi: 10.1039/C8CS00773J
    [57]
    Gao X, Zhu Y, Yi D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy[J]. Science advances,2018,4(7):eaat6378. doi: 10.1126/sciadv.aat6378
    [58]
    Wang L, Zhang Y, Li L, et al. Graphdiyne oxide elicits a minor foreign-body response and generates quantum dots due to fast degradation[J]. Journal of Hazardous Materials,2023,445:130512. doi: 10.1016/j.jhazmat.2022.130512
    [59]
    Zheng X, Xue Y, Chen S, Li Y. Advances in hydrogen energy conversion of graphdiyne-based materials[J]. EcoEnergy,2023,1(1):45-59. doi: 10.1002/ece2.5
    [60]
    Luan X, Xue Y. Nickel(hydro)oxide/graphdiyne catalysts for efficient oxygen production reaction[J]. Chemical Research in Chinese Universities,2021,37:1268-1274. doi: 10.1007/s40242-021-1336-7
  • ncm2023-0220_NCM+Supporting+information+revised_新型炭材料(中英文).pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(158) PDF Downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return