Volume 39 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
CHE Hang-xin, GAO Yu-fei, YANG Jia-hui, HONG Song, HAO Lei-duan, XU Liang, Sana Taimoor, Alex W. Robertson, SUN Zhen-yu. Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries. New Carbon Mater., 2024, 39(1): 131-141. doi: 10.1016/S1872-5805(24)60837-1
Citation: CHE Hang-xin, GAO Yu-fei, YANG Jia-hui, HONG Song, HAO Lei-duan, XU Liang, Sana Taimoor, Alex W. Robertson, SUN Zhen-yu. Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries. New Carbon Mater., 2024, 39(1): 131-141. doi: 10.1016/S1872-5805(24)60837-1

Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries

doi: 10.1016/S1872-5805(24)60837-1
Funds:  This work was supported by the National Key Research and Development Program of China (2022YFC2105900), National Natural Science Foundation of China (22372007 and 21972010), and Fundamental Research Funds for the Central Universities (JD2310, ZY2317 and buctrc202226)
More Information
  • Author Bio:

    车航欣,硕士研究生. E-mail:chehangx@163.com

  • Corresponding author: HONG Song, Associate Professor. E-mail: hongsong@mail.buct.edu.cn; SUN Zhen-yu, Professor. E-mail: sunzy@mail.buct.edu.cn
  • Received Date: 2023-10-27
  • Accepted Date: 2023-12-22
  • Rev Recd Date: 2023-12-22
  • Available Online: 2023-12-27
  • Publish Date: 2024-02-01
  • Iron-chromium redox flow batteries (ICRFBs) use abundant and inexpensive chromium and iron as the active substances in the electrolyte and have great potential as a cost-effective and large-scale energy storage system. However, they are still plagued by several issues, such as the low electrochemical activity of Cr3+/Cr2+ and the occurrence of the undesired hydrogen evolution reaction (HER). We report the synthesis of amorphous bismuth (Bi) nanoparticles (NPs) immobilized on N-doped graphite felts (GFs) by a combined self-polymerization and wet-chemistry reduction strategy followed by annealing, which are used as the negative electrodes for ICRFBs. The resulting Bi NPs react with H+ to form intermediates and greatly inhibit the parasitic HER. In addition, the combined effect of Bi and N dopants on the surface of GF dramatically increases the electrochemical activity of Fe2+/Fe3+ and Cr3+/Cr2+, reduces the charge transfer resistance, and increases the mass transfer rate compared to plain GF. At the optimum Bi/N ratio of 2, a high coulombic efficiency of up to 97.7% is maintained even for 25 cycles at different current densities, the energy efficiency reaches 85.8% at 60.0 mA cm−2, exceeding many other reported materials, and the capacity reaches 862.7 mAh L−1 after 100 cycles, which is about 5.3 times that of bare GF.
  • loading
  • [1]
    GüR T M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage[J]. Energy Environmental Science,2018,11(10):2696-767. doi: 10.1039/C8EE01419A
    [2]
    Zheng Q, Li X F, Cheng Y H, et al. Development and perspective in vanadium flow battery modeling[J]. Applied Energy,2014,132:254-266. doi: 10.1016/j.apenergy.2014.06.077
    [3]
    Li X R, Xiong J, Tang A, et al. Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery[J]. Applied Energy,2018,211:1050-1059. doi: 10.1016/j.apenergy.2017.12.009
    [4]
    Zeng Y K, Zhao T S, An L, et al. A comparative study of all−vanadium and iron−chromium redox flow batteries for large−scale energy storage[J]. Journal of Power Sources,2015,300:438-443. doi: 10.1016/j.jpowsour.2015.09.100
    [5]
    Yeonjoo A, Janghyuk M, Seoung E P, et al. High-performance bifunctional electrocatalyst for iron-chromium redox flow batteries[J]. Chemical Engineering Journal,2021,421:127855. doi: 10.1016/j.cej.2020.127855
    [6]
    Wang W, Luo Q T, Li B, et al. Recent progress in redox flow battery research and development[J]. Advanced Functional Materials,2012,23(8):970-986.
    [7]
    Chakrabarti M H, Brandon N P, Hajimolana S A, et al. Application of carbon materials in redox flow batteries[J]. Journal of Power Sources,2014,253:150-166. doi: 10.1016/j.jpowsour.2013.12.038
    [8]
    Fic K, Platek A, Piwek J, et al. Sustainable materials for electrochemical capacitors[J]. Materials Today,2018,21(4):437-454. doi: 10.1016/j.mattod.2018.03.005
    [9]
    Ryu J, Park M, Cho J. Catalytic effects of Bi/N-co-doped porous carbon incorporated with ketjenblack nanoparticles for all-vanadium redox flow batteries[J]. Journal of The Electrochemical Society,2016,163(1):A5144. doi: 10.1149/2.0191601jes
    [10]
    Wang S L, Xu Z Y, Wu X L, et al. Excellent stability and electrochemical performance of the electrolyte with indium ion for iron-chromium flow battery[J]. Electrochimica Acta,2021,368:137524. doi: 10.1016/j.electacta.2020.137524
    [11]
    Lopez-Atalaya M, Codina G, Perez J R, et al. Optimization studies on a Fe/Cr redox flow battery[J]. Journal of Power Sources,1992,39(2):147-154. doi: 10.1016/0378-7753(92)80133-V
    [12]
    Siva R T, Rama K H G. Synthesis, characterization and evaluation of Pb electroplated carbon felts for achieving maximum efficiency of Fe-Cr redox flow cell[J]. Journal of New Materials for Electrochemical Systems,2013,16:287-292. doi: 10.14447/jnmes.v16i4.155
    [13]
    Xie C Y, Yan H, Song Y F, et al. Catalyzing anode Cr2+/Cr3+ redox chemistry with bimetallic electrocatalyst for high-performance iron-chromium flow batteries[J]. Journal of Power Sources,2023,564:232860. doi: 10.1016/j.jpowsour.2023.232860
    [14]
    Yang Z F, Wei Y G, Zeng Y K, et al. Effects of in-situ bismuth catalyst electrodeposition on performance of vanadium redox flow batteries[J]. Journal of Power Sources,2021,506:230238. doi: 10.1016/j.jpowsour.2021.230238
    [15]
    Wu C D, Scherson D A, Calvo E J, et al. A Bismuth-based electrocatalyst for the chromous−chromic couple in acid electrolytes[J]. Journal of the Electrochemical Society,1986,133:2109-2112. doi: 10.1149/1.2108351
    [16]
    Chen N, Zhang H, Luo X D, et al. SiO2-decorated graphite felt electrode by silicic acid etching for iron-chromium redox flow battery[J]. Electrochimica Acta,2020,336:135646. doi: 10.1016/j.electacta.2020.135646
    [17]
    Xiang Y, Daoud W A. Binary NiCoO2-modified graphite felt as an advanced positive electrode for vanadium redox flow batteries[J]. Journal of Materials Chemistry A,2019,7(10):5589-5600. doi: 10.1039/C8TA09650C
    [18]
    Ren H L, Su Y, Zhao S, et al. Research on the performance of cobalt oxide decorated graphite felt as electrode of iron-chromium flow battery[J]. ChemElectroChem,2023,10(5):e202201146. doi: 10.1002/celc.202201146
    [19]
    Ji Y, Li J L, Li S F Y. Synergistic effect of the bifunctional polydopamine-Mn3O4 composite electrocatalyst for vanadium redox flow batteries[J]. Journal of Materials Chemistry A,2017,5(29):15154-15166. doi: 10.1039/C7TA03922K
    [20]
    Zhang K Y, Yan C W, Tang A. Interfacial co-polymerization derived nitrogen-doped carbon enables high-performance carbon felt for vanadium flow batteries[J]. Journal of Materials Chemistry A,2021,9(32):17300-17310. doi: 10.1039/D1TA03683A
    [21]
    Li B, Gu M, Nie Z M, et al. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery[J]. Nano Letters,2013,13(3):1330-1335. doi: 10.1021/nl400223v
    [22]
    Grubaˇc Z, Metikoˇs-Hukovi ́c M. Kinetics and mechanism of electrocrystallization of bismuth in oxide matrix[J]. Electrochim. Acta,1999,44(25):4559-4571. doi: 10.1016/S0013-4686(99)00174-7
    [23]
    Zhang H, Tan Y, Luo X D, et al. Polarization effects of a rayon and polyacrylonitrile based graphite felt for iron-chromium redox flow batteries[J]. ChemElectroChem,2019,6(12):3175-3188. doi: 10.1002/celc.201900518
    [24]
    Sun C Y, Zhang H, Luo X D, et al. A comparative study of Nafion and sulfonated poly(ether ether ketone) membrane performance for iron-chromium redox flow battery[J]. Advanced Materials Interfaces,2020,7(20):2000855. doi: 10.1002/admi.202000855
  • 0261.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(147) PDF Downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return