Volume 39 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
WU Ze-lin, WANG Cong-wei, ZHANG Xiao-xiang, GUO Quan-gui, WANG Jun-ying. Graphene-based CO2 reduction electrocatalysts: A review. New Carbon Mater., 2024, 39(1): 100-130. doi: 10.1016/S1872-5805(24)60839-5
Citation: WU Ze-lin, WANG Cong-wei, ZHANG Xiao-xiang, GUO Quan-gui, WANG Jun-ying. Graphene-based CO2 reduction electrocatalysts: A review. New Carbon Mater., 2024, 39(1): 100-130. doi: 10.1016/S1872-5805(24)60839-5

Graphene-based CO2 reduction electrocatalysts: A review

doi: 10.1016/S1872-5805(24)60839-5
Funds:  National Natural Science Foundation of China (22179138), Natural Science Foundation of Shanxi (202103021224440, 20210302123005), Youth Innovation Promotion Association CAS (2020180), and Shanxi Major Project (20181102026).
More Information
  • Author Bio:

    WU Ze-lin, Ph.D. student. E-mail: wuzelin19@mails.ucas.ac.cn

  • Corresponding author: WANG Cong-wei, Ph.D., Associate Professor. E-mail: wangcongwei@sxicc.ac.cn; GUO Quan-gui, Ph.D., Professor. E-mail: qgguo@sxicc.ac.cn; WANG Jun-ying, Ph.D., Associate Professor. E-mail: wangjy@sxicc.ac.cn
  • Received Date: 2023-11-03
  • Accepted Date: 2024-01-05
  • Rev Recd Date: 2024-01-04
  • Available Online: 2024-01-10
  • Publish Date: 2024-02-01
  • The reduction of carbon dioxide (CO2) by electrochemical methods for the production of fuels and value-added chemicals is an effective strategy for overcoming the global warming problem. Due to the stable molecular structure of CO2, the design of highly selective, energy-efficient and cost-effective electrocatalysts is key. For this reason, graphene and its derivatives are competitive for CO2 electroreduction with their unique and excellent physical, mechanical and electrical properties and relatively low cost. In addition, the surface of graphene-based materials can be modified using different methods, including doping, defect engineering, production of composite structures and wrapped shapes. We first review the fundamental concepts and criteria for evaluating electrochemical CO2 reduction, as well as the catalytic principles and processes. Methods for preparing graphene-based catalysts are briefly introduced, and recent research on them is summarized according to the categories of the catalytic sites. Finally, the future development direction of CO2 electroreduction technology is discussed.

  • loading
  • [1]
    Zhang X, Zhang Z, Li H, et al. Insight into heterogeneous electrocatalyst design understanding for the reduction of carbon dioxide [J]. Advanced Energy Materials, 2022, 12(39) : 2201461.
    [2]
    Xie H, Wang T, Liang J, et al. Cu-based nanocatalysts for electrochemical reduction of CO2[J]. Nano Today,2018,21:41-54. doi: 10.1016/j.nantod.2018.05.001
    [3]
    Tan H, Si W, Peng W, et al. Laser direct writing derived robust carbon nitride films with efficient photon-to-electron conversion for multifunctional photoelectrical applications[J]. Carbon Energy,2022,4(6):1228-1241. doi: 10.1002/cey2.225
    [4]
    Tian Y, Chen R, Liu X, et al. Fluorine-regulated carbon nanotubes decorated with Co single atoms for multi-site electrocatalysis toward two-electron oxygen reduction [J]. Ecomat, 2023, 5(5): e12336.
    [5]
    Jia C, Dastafkan K, Zhao C. Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction [J]. Current Opinion in Electrochemistry, 2022, 31: 100854.
    [6]
    Saha P, Amanullah S, Dey A. Selectivity in electrochemical CO2 reduction[J]. Accounts of Chemical Research,2022,55(2):134-144. doi: 10.1021/acs.accounts.1c00678
    [7]
    Wang X, Hu Q, Li G, et al. Recent advances and perspectives of electrochemical CO2 reduction toward C2+ products on Cu-based catalysts [J]. Electrochemical Energy Reviews, 2022, 5(SUPPL 2): 28.
    [8]
    Liu X, Chen R, Peng W, et al. Multiatom activation of single-atom electrocatalysts via remote coordination for ultrahigh-rate two-electron oxygen reduction[J]. Journal of Energy Chemistry,2023,76:622-630. doi: 10.1016/j.jechem.2022.10.015
    [9]
    Tan H, Peng W, Zhang T, et al. Highly polymerized wine-red carbon nitride to enhance photoelectrochemical water splitting performance of hematite[J]. Journal of Physical Chemistry C,2021,125(24):13273-13282. doi: 10.1021/acs.jpcc.1c02342
    [10]
    Li M, Wang H, Luo W, et al. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction [J]. Advanced Materials, 2020, 32(34): 2001848.
    [11]
    Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design [J]. Science, 2017, 355(6321): eaad4998.
    [12]
    Tan H, Si W, Peng W, et al. Flexo-/piezoelectric polarization boosting exciton dissociation in curved two-dimensional carbon nitride photocatalyst[J]. Nano Letters,2023,23(22):10571-10578. doi: 10.1021/acs.nanolett.3c03466
    [13]
    Peng W, Liu J, Liu X, et al. Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production[J]. Nature Communications,2023,14(1):4430-4430. doi: 10.1038/s41467-023-40118-y
    [14]
    Cui H, Guo Y, Guo L, et al. Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction[J]. Journal of Materials Chemistry A,2018,6(39):18782-18793. doi: 10.1039/C8TA07430E
    [15]
    Zhang J, Cai W, Hu F X, et al. Recent advances in single atom catalysts for the electrochemical carbon dioxide reduction reaction[J]. Chemical Science,2021,12(20):6800-6819. doi: 10.1039/D1SC01375K
    [16]
    Qu J, Cao X, Gao L, et al. Electrochemical carbon dioxide reduction to ethylene: From mechanistic understanding to catalyst surface engineering [J]. Nano-Micro Letters, 2023, 15(1): 178.
    [17]
    Feng J, Ni J, Pan H. Synergistic carbon and hydrogen reactions in the electrochemical reduction of CO2 to liquid fuels[J]. Journal of Materials Chemistry A,2021,9(17):10546-10561. doi: 10.1039/D1TA00758K
    [18]
    Woldu A R, Huang Z, Zhao P, et al. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts [J]. Coordination Chemistry Reviews, 2022, 454: 214340.
    [19]
    Lee S M, Cheon W S, Lee M G, et al. Coordination environment in single-atom catalysts for high-performance electrocatalytic CO2 reduction [J]. Small Structures, 2023, 4(6): 2200236.
    [20]
    Sun B, Dai M, Cai S, et al. Challenges and strategies towards copper-based catalysts for enhanced electrochemical CO2 reduction to multi-carbon products [J]. Fuel, 2023, 332: 126114.
    [21]
    Li M, Idros M N, Wu Y, et al. The role of electrode wettability in electrochemical reduction of carbon dioxide[J]. Journal of Materials Chemistry A,2021,9(35):19369-19409. doi: 10.1039/D1TA03636J
    [22]
    Lonkar S P, Deshmukh Y S, Abdala A A. Recent advances in chemical modifications of graphene[J]. Nano Research,2015,8(4):1039-1074. doi: 10.1007/s12274-014-0622-9
    [23]
    Sattar T. Current review on synthesis, composites and multifunctional properties of graphene [J]. Topics in Current Chemistry, 2019, 377(2): 10.
    [24]
    Wang J, Jin X, Li C, et al. Graphene and graphene derivatives toughening polymers: Toward high toughness and strength[J]. Chemical Engineering Journal,2019,370:831-854. doi: 10.1016/j.cej.2019.03.229
    [25]
    Yan R, Wang K, Wang C, et al. A review of graphene-based catalysts for oxygen reduction reaction[J]. New Carbon Materials,2020,35(5):508-521.
    [26]
    Yu S, Guo B, Zeng T, et al. Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective [J]. Composites Part B-Engineering, 2022, 246: 110232.
    [27]
    Ma T, Fan Q, Li X, et al. Graphene-based materials for electrochemical CO2 reduction[J]. Journal of CO2 Utilization,2019,30:168-182. doi: 10.1016/j.jcou.2019.02.001
    [28]
    Hu H, Ou J Z, Xu X, et al. Graphene-assisted construction of electrocatalysts for carbon dioxide reduction [J]. Chemical Engineering Journal, 2021, 425: 130587.
    [29]
    Hasani A, Teklagne M A, Do H H, et al. Graphene-based catalysts for electrochemical carbon dioxide reduction[J]. Carbon Energy,2020,2(2):158-175. doi: 10.1002/cey2.41
    [30]
    Du Y, Meng X, Wang Z, et al. Graphene-based catalysts for CO2 electroreduction [J]. Acta Physico-Chimica Sinica, 2022, 38(2): 2101009.
    [31]
    Delgado S, Arevalo M D C, Pastor E, et al. Electrochemical reduction of carbon dioxide on graphene-based catalysts [J]. Molecules, 2021, 26(3): 572.
    [32]
    Rong Y W, Sang J Q, Che L, et al. Designing electrolytes for aqueous electrocatalytic CO2 reduction [J]. Acta Physico-Chimica Sinica, 2023, 39(5): 2212027.
    [33]
    Lai W C, Qiao Y, Zhang J W, et al. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction[J]. Energy & Environmental Science,2022,15(9):3603-3629.
    [34]
    Shao Q, Wang P T, Liu S H, et al. Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction[J]. Journal of Materials Chemistry A,2019,7(36):20478-20493. doi: 10.1039/C9TA07016H
    [35]
    Gao Z, Li J, Zhang Z, et al. Recent advances in carbon-based materials for electrochemical CO2 reduction reaction[J]. Chinese Chemical Letters,2022,33(5):2270-2280. doi: 10.1016/j.cclet.2021.09.037
    [36]
    Gao F Y, Wu Z Z, Gao M R. Electrochemical CO2 reduction on transition-metal chalcogenide catalysts: Recent advances and future perspectives[J]. Energy & Fuels,2021,35(16):12869-12883.
    [37]
    Tan X, Yu C, Ren Y, et al. Recent advances in innovative strategies for the CO2 electroreduction reaction[J]. Energy & Environmental Science,2021,14(2):765-780.
    [38]
    Liu S, Yang H, Su X, et al. Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: A review[J]. Journal of Energy Chemistry,2019,36:95-105. doi: 10.1016/j.jechem.2019.06.013
    [39]
    Li H, Jiang K, Zou S Z, et al. Fundamental aspects in CO2 electroreduction reaction and solutions from in situ vibrational spectroscopies[J]. Chinese Journal of Catalysis,2022,43(11):2772-2791. doi: 10.1016/S1872-2067(22)64095-6
    [40]
    He J, Wu C, Li Y, et al. Design of pre-catalysts for heterogeneous CO2 electrochemical reduction[J]. Journal of Materials Chemistry A,2021,9(35):19508-19533. doi: 10.1039/D1TA03624F
    [41]
    Marcandalli G, Monteiro M C O, Goyal A, et al. Electrolyte effects on CO2 electrochemical reduction to CO[J]. Accounts of Chemical Research,2022,55(14):1900-1911. doi: 10.1021/acs.accounts.2c00080
    [42]
    Zhou R, Han N, Li Y. Recent advances in bismuth-based CO2 reduction electrocatalysts[J]. Journal of Electrochemistry,2019,25(4):445-454.
    [43]
    Wang G, Chen J, Ding Y, et al. Electrocatalysis for CO2 conversion: From fundamentals to value-added products[J]. Chemical Society Reviews,2021,50(8):4993-5061. doi: 10.1039/D0CS00071J
    [44]
    Kempler P A, Nielander A C. Reliable reporting of faradaic efficiencies for electrocatalysis research [J]. Nature Communications, 2023, 14(1): 1158.
    [45]
    Zhao Y, Zheng L, Jiang D, et al. Nanoengineering metal-organic framework-based materials for use in electrochemical CO2 reduction reactions [J]. Small, 2021, 17(16): 2006590.
    [46]
    Wang L, Chen W, Zhang D, et al. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews,2019,48(21):5310-5349. doi: 10.1039/C9CS00163H
    [47]
    Feaster J T, Shi C, Cave E R, et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes[J]. ACS Catalysis,2017,7(7):4822-4827. doi: 10.1021/acscatal.7b00687
    [48]
    Song Y, Wang S, Chen W, et al. Enhanced ethanol production from CO2 electroreduction at micropores in nitrogen-doped mesoporous carbon[J]. Chemsuschem,2020,13(2):293-297. doi: 10.1002/cssc.201902833
    [49]
    Zhao K, Quan X. Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: Recent progress and remaining challenges[J]. ACS Catalysis,2021,11(4):2076-2097. doi: 10.1021/acscatal.0c04714
    [50]
    Chen T, Liu T, Shen X, et al. Synergistically electronic tuning of metalloid cdse nanorods for enhanced electrochemical CO2 reduction[J]. Science China-Materials,2021,64(12):2997-3006. doi: 10.1007/s40843-021-1696-x
    [51]
    Fu L, Wang R, Zhao C, et al. Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study [J]. Chemical Engineering Journal, 2021, 414: 128857.
    [52]
    Cheng T, Xiao H, Goggard W A, III. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(8):1795-1800.
    [53]
    Ledezma Y I, Gallent E P, Koper M T M, et al. Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction[J]. Catalysis Today,2016,262:90-94. doi: 10.1016/j.cattod.2015.09.029
    [54]
    Han N, Ding P, He L, et al. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate [J]. Advanced Energy Materials, 2020, 10(11): 1902338.
    [55]
    Xu H, Cheng D, Cao D, et al. A universal principle for a rational design of single-atom electrocatalysts[J]. Nature Catalysis,2018,1(5):339-348. doi: 10.1038/s41929-018-0063-z
    [56]
    Yang H B, Hung S, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction[J]. Nature Energy,2018,3(2):140-147. doi: 10.1038/s41560-017-0078-8
    [57]
    Tomboc G M, Choi S, Kwon T, et al. Potential link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs[J]. Advanced Materials,2020,32(17):1908398.
    [58]
    Sun Z, Ma T, Tao H, et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J]. Chem,2017,3(4):560-587. doi: 10.1016/j.chempr.2017.09.009
    [59]
    Huang J E, Li F, Ozden A, et al. CO2 electrolysis to multicarbon products in strong acid[J]. Science,2021,372(6546):1074-1078. doi: 10.1126/science.abg6582
    [60]
    Nie X, Esopi M R, Janik M J, et al. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps[J]. Angewandte Chemie-International Edition,2013,52(9):2459-2462. doi: 10.1002/anie.201208320
    [61]
    She X, Wang Y, Xu H, et al. Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels [J]. Angewandte Chemie-International Edition, 2022, 61(49): e202211396.
    [62]
    Sandberg R B, Montoya J H, Chan K, et al. CO-CO coupling on Cu facets: Coverage, strain and field effects[J]. Surface Science,2016,654:56-62. doi: 10.1016/j.susc.2016.08.006
    [63]
    Wang G, Ma Y, Wang J, et al. Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction[J]. Nanoscale,2023,15(14):6456-6475. doi: 10.1039/D3NR00484H
    [64]
    Ma Y, Wang J, Yu J, et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction[J]. Matter,2021,4(3):888-926. doi: 10.1016/j.matt.2021.01.007
    [65]
    Nitopi S, Bertheussen E, Scott S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews,2019,119(12):7610-7672. doi: 10.1021/acs.chemrev.8b00705
    [66]
    Martin A, Escarpa A. Graphene: The cutting-edge interaction between chemistry and electrochemistry[J]. Trac-Trends in Analytical Chemistry,2014,56:13-26. doi: 10.1016/j.trac.2013.12.008
    [67]
    Liu F, Li P, An H, et al. Achievements and challenges of graphene chemical vapor deposition growth[J]. Advanced Functional Materials,2022,32(42):2203191.
    [68]
    Zheng S, Wu Z S, Wang S, et al. Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors[J]. Energy Storage Materials,2017,6:70-97. doi: 10.1016/j.ensm.2016.10.003
    [69]
    Chen W, Xiao P, Chen H, et al. Polymeric graphene bulk materials with a 3D cross-linked monolithic graphene network[J]. Advanced Materials,2019,31(9):1802403.
    [70]
    Huang C, Li C, Shi G. Graphene based catalysts[J]. Energy & Environmental Science,2012,5(10):8848-8868.
    [71]
    Jamesh M I. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media[J]. Journal of Power Sources,2016,333:213-236. doi: 10.1016/j.jpowsour.2016.09.161
    [72]
    Shaari N, Kamarudin S K. Graphene in electrocatalyst and proton conductiong membrane in fuel cell applications: An overview[J]. Renewable & Sustainable Energy Reviews,2017,69:862-870.
    [73]
    Cheng Y, Veder J P, Thomsen L, et al. Electrochemically substituted metal phthalocyanines, e-MPc (M = Co, Ni), as highly active and selective catalysts for CO2 reduction[J]. Journal of Materials Chemistry A,2018,6(4):1370-1375. doi: 10.1039/C7TA09208C
    [74]
    Bai X F, Chen W, Wang B Y, et al. Recent progress on electrochemical reduction of carbon dioxide[J]. Acta Physico-Chimica Sinica,2017,33(12):2388-2403.
    [75]
    Li X, Chai G, Xu X, et al. Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites[J]. Carbon,2020,167:658-667. doi: 10.1016/j.carbon.2020.06.036
    [76]
    Duan Y, Liu K, Zhang Q, et al. Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst[J]. Small Methods,2020,4(5):1900846.
    [77]
    Tao H, Sun X, Back S, et al. Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO[J]. Chemical Science,2018,9(2):483-487. doi: 10.1039/C7SC03018E
    [78]
    Yuan J, Yang M, Zhi W, et al. Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts[J]. Journal of CO2 Utilization,2019,33:452-460. doi: 10.1016/j.jcou.2019.07.014
    [79]
    Choi J, Wagner P, Jalili R, et al. A porphyrin/graphene framework: A highly efficient and robust electrocatalyst for carbon dioxide reduction[J]. Advanced Energy Materials,2018,8(26):1801280.
    [80]
    Mou K, Chen Z, Zhang X, et al. Highly efficient electroreduction of CO2 on nickel single-atom catalysts: Atom trapping and nitrogen anchoring[J]. Small,2019,15(49):1903668.
    [81]
    Wang H, Liu G, Chen C, et al. Single-Ni sites embedded in multilayer nitrogen-doped graphene derived from amino-functionalized MOF for highly selective CO2 electroreduction[J]. ACS Sustainable Chemistry & Engineering,2021,9(10):3792-3801.
    [82]
    Zu X, Li X, Liu W, et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites[J]. Advanced Materials,2019,31(15):1808135.
    [83]
    Bi W, Li X, You R, et al. Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction [J]. Advanced Materials, 2018, 30(18): 1706617.
    [84]
    Liu S, Yang H, Huang X, et al. Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction [J]. Advanced Functional Materials, 2018, 28(21): 1800499.
    [85]
    Zhao Y, Yuan Q, Fan M, et al. Fabricating pyridinic N-B sites in porous carbon as efficient metal-free electrocatalyst in conversion CO2 into CH4 [J]. Chinese Chemical Letters, 2023, 34(8): 108120.
    [86]
    Wang H, Chen Y, Hou X, et al. Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution[J]. Green Chemistry,2016,18(11):3250-3256. doi: 10.1039/C6GC00410E
    [87]
    Pan F, Li B, Sarnello E, et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction[J]. ACS Catalysis,2020,10(19):10803-10811. doi: 10.1021/acscatal.0c02499
    [88]
    Su P, Iwase K, Nakanishi S, et al. Nickel-nitrogen-modified graphene: An efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide[J]. Small,2016,12(44):6083-6089. doi: 10.1002/smll.201602158
    [89]
    Zhang H, Li J, Xi S, et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction[J]. Angewandte Chemie-International Edition,2019,58(42):14871-14876. doi: 10.1002/anie.201906079
    [90]
    Hu C, Mu Y, Bai S, et al. Polyvinyl pyrrolidone mediated fabrication of Fe, N-codoped porous carbon sheets for efficient electrocatalytic CO2 reduction[J]. Carbon,2019,153:609-616. doi: 10.1016/j.carbon.2019.07.071
    [91]
    Zhai P, Gu X, Wei Y, et al. Enhanced mass transfer in three-dimensional single-atom nickel catalyst with open-pore structure for highly efficient CO2 electrolysis[J]. Journal of Energy Chemistry,2021,62:43-50. doi: 10.1016/j.jechem.2021.03.011
    [92]
    Xu C, Zhi X, Vasileff A, et al. Highly selective two-electron electrocatalytic CO2 reduction on single-atom Cu catalysts [J]. Small Structures, 2021, 2(1): 2000058.
    [93]
    Yuan J, Zhi W, Liu L, et al. Electrochemical reduction of CO2 at metal-free N-functionalized graphene oxide electrodes[J]. Electrochimica Acta,2018,282:694-701. doi: 10.1016/j.electacta.2018.06.107
    [94]
    Hu M K, Zhou S, Ma D D, et al. New insight into heterointerfacial effect for heterogenized metallomacrocycle catalysts in executing electrocatalytic CO2 reduction [J]. Applied Catalysis B-Environmental, 2022, 310: 121324.
    [95]
    Li M, Yan C, Ramachandran R, et al. Non-peripheral octamethyl-substituted cobalt phthalocyanine nanorods supported on N-doped reduced graphene oxide achieve efficient electrocatalytic CO2 reduction to CO [J]. Chemical Engineering Journal, 2022, 430: 133050.
    [96]
    Zhang H, Wang H, Jia S, et al. CoN4 active sites in a graphene matrix for the highly efficient electrocatalysis of CO2 reduction[J]. New Carbon Materials,2022,37(4):732-733.
    [97]
    Bochlin Y, Korin E, Bettelheim A. Different pathways for CO2 electrocatalytic reduction by confined CoTMPyP in electrodeposited reduced graphene oxide[J]. ACS Applied Energy Materials,2019,2(12):8434-8440. doi: 10.1021/acsaem.9b01279
    [98]
    Ma Z, Tsounis C, Toe C Y, et al. Reconstructing Cu nanoparticle supported on vertical graphene surfaces via electrochemical treatment to tune the selectivity of CO2 reduction toward valuable products[J]. ACS Catalysis,2022,12(9):4792-4805. doi: 10.1021/acscatal.1c05431
    [99]
    Mardones Herrera E, Castro C C, Nanda K K, et al. Reduced graphene oxide overlayer on copper nanocube electrodes steers the selectivity towards ethanol in electrochemical reduction of carbon dioxide [J]. Chemelectrochem, 2022, 9(10): e202200259.
    [100]
    Jiang X, Wang Q, Xiao X, et al. Interfacial engineering of bismuth with reduced graphene oxide hybrid for improving CO2 electroreduction performance [J]. Electrochimica Acta, 2020, 357: 136840.
    [101]
    Li F, Xue M, Li J, et al. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material[J]. Angewandte Chemie-International Edition,2017,56(46):14718-14722. doi: 10.1002/anie.201710038
    [102]
    Wang J, Huang X, Xi S, et al. Linkage effect in the heterogenization of cobalt complexes by doped graphene for electrocatalytic CO2 reduction[J]. Angewandte Chemie-International Edition,2019,58(38):13532-13539. doi: 10.1002/anie.201906475
    [103]
    Gu H, Shi G, Zhong L, et al. A two-dimensional van der waals heterostructure with isolated electron-deficient cobalt sites toward high-efficiency CO2 electroreduction[J]. Journal of the American Chemical Society,2022,144(47):21502-21511. doi: 10.1021/jacs.2c07601
    [104]
    Wu J, Ma S, Sun J, et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates [J]. Nature Communications, 2016, 7: 13869.
    [105]
    Zhang T, Li W, Huang K, et al. Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion [J]. Nature Communications, 2021, 12(1): 5265.
    [106]
    Yadav R M, Li Z, Zhang T, et al. Amine-functionalized carbon nanodot electrocatalysts converting carbon dioxide to methane [J]. Advanced Materials, 2022, 34(2): 2105690.
    [107]
    Jing X, Zhu Z, Chen L, et al. Boosting CO2 electroreduction on bismuth nanoplates with a three-dimensional nitrogen-doped graphene aerogel matrix[J]. ACS Applied Materials & Interfaces,2023,15(16):20317-20324.
    [108]
    Wu Z, Yu J, Wu K, et al. Ultrafine CuS anchored on nitrogen and sulfur co-doped graphene for selective CO2 electroreduction to formate [J]. Applied Surface Science, 2022, 575: 151796.
    [109]
    Ning H, Fei X, Tan Z, et al. In situ-fabricated In2S3-reduced graphene oxide nanosheet composites for enhanced CO2 electroreduction to formate[J]. ACS Applied Nano Materials,2022,5(2):2335-2342. doi: 10.1021/acsanm.1c04016
    [110]
    Dongare S, Singh N, Bhunia H. Oxide-derived Cu-Zn nanoparticles supported on N-doped graphene for electrochemical reduction of CO2 to ethanol [J]. Applied Surface Science, 2021, 556: 149790.
    [111]
    Wu J, Liu M, Sharma P P, et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam[J]. Nano Letters,2016,16(1):466-470. doi: 10.1021/acs.nanolett.5b04123
    [112]
    Zhang K, Wang J, Zhang W, et al. Regulated surface electronic states of CuNi nanoparticles through metal-support interaction for enhanced electrocatalytic CO2 reduction to ethanol [J]. Small, 2023, 19(32): 2300281.
    [113]
    Zhu M, Jiang H, Zhang B, et al. Nanosecond laser confined bismuth moiety with tunable structures on graphene for carbon dioxide reduction[J]. ACS Nano,2023,17(9):8705-8716. doi: 10.1021/acsnano.3c01897
    [114]
    Ren M, Zheng H, Lei J, et al. CO2 to formic acid using Cu-Sn on laser-induced graphene[J]. ACS Applied Materials & Interfaces,2020,12(37):41223-41229.
    [115]
    Cheng Y, Zhao S, Li H, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2[J]. Applied Catalysis B-Environmental,2019,243:294-303. doi: 10.1016/j.apcatb.2018.10.046
    [116]
    Yang F, Liang C, Yu H, et al. Phosphorus-doped graphene aerogel as self-supported electrocatalyst for CO2-to-ethanol conversion [J]. Advanced Science, 2022, 9(25): 2202006.
    [117]
    Bochlin Y, Ezuz L, Kadosh Y, et al. Enhancement of electrocatalytic CO2 reduction to methane by CoTMPyP when hosted in a 3D covalent graphene framework[J]. ACS Applied Energy Materials,2021,4(9):10033-10041. doi: 10.1021/acsaem.1c01978
    [118]
    Kong X, Liu G, Tiang S, et al. Coupling cobalt phthalocyanine molecules on 3D nitrogen-doped vertical graphene arrays for highly efficient and robust CO2 electroreduction [J]. Small, 2022, 18(51): 202204615.
    [119]
    Liang F, Zhang J, Hu Z, et al. Intrinsic defect-rich graphene coupled cobalt phthalocyanine for robust electrochemical reduction of carbon dioxide[J]. ACS Applied Materials & Interfaces,2021,13(21):25523-25532.
    [120]
    Zhang H, Wang J, Zhao Z, et al. The synthesis of atomic Fe embedded in bamboo-CNTs grown on graphene as a superior CO2 electrocatalyst[J]. Green Chemistry,2018,20(15):3521-3529. doi: 10.1039/C8GC01466C
    [121]
    Zhang C, Yang S, Wu J, et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene [J]. Advanced Energy Materials, 2018, 8(19): 1703487.
    [122]
    Jia C, Ching K, Kumar P V, et al. Vitamin B12 on graphene for highly efficient CO2 electroreduction[J]. ACS Applied Materials & Interfaces,2020,12(37):41288-41293.
    [123]
    Wang Z, Han Y, Li B, et al. Regulation of electrocatalytic behavior by axial oxygen enhances the catalytic activity of CoN4 sites for CO2 reduction [J]. Small, 2023, 19(34): 202301797.
    [124]
    Jeong H, Balamurugan M, Choutipalli V S K, et al. Tris(2-benzimidazolylmethyl)amine-directed synthesis of single-atom nickel catalysts for electrochemical CO production from CO2[J]. Chemistry-a European Journal,2018,24(69):18444-18454. doi: 10.1002/chem.201803615
    [125]
    Shao T, Duan D, Liu S, et al. Tuning the local electronic structure of a single-site Ni catalyst by co-doping a 3D graphene framework with B/N atoms toward enhanced CO2 electroreduction[J]. Nanoscale,2022,14(3):833-841. doi: 10.1039/D1NR06545A
    [126]
    Chen Z, Mou K, Yao S, et al. Zinc-coordinated nitrogen-codoped graphene as an efficient catalyst for selective electrochemical reduction of CO2 to CO[J]. Chemsuschem,2018,11(17):2944-2952. doi: 10.1002/cssc.201800925
    [127]
    Han L, Liu X, He J, et al. Modification of the coordination environment of active sites on moc for high-efficiency CH4 production [J]. Advanced Energy Materials, 2021, 11(24): 2100044.
    [128]
    Huang P, Cheng M, Zhang H, et al. Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene[J]. Nano Energy,2019,61:428-434. doi: 10.1016/j.nanoen.2019.05.003
    [129]
    Huang H, Chen S, Jiang P, et al. Main-group s-block element lithium atoms within carbon frameworks as high-active sites for electrocatalytic reduction reactions [J]. Advanced Functional Materials, 2023, 33(30): 202300475.
    [130]
    Li Y, Chen C, Cao R, et al. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO [J]. Applied Catalysis B-Environmental, 2020, 268: 118747.
    [131]
    Wang F, Miao Z, Mu J, et al. A Ni nanoparticles encapsulated in N-doped carbon catalyst for efficient electroreduction CO2: Identification of active sites for adsorption and activation of CO2 molecules [J]. Chemical Engineering Journal, 2022, 428: 131323.
    [132]
    Huang J, Guo X, Yue G, et al. Boosting CH3OH production in electrocatalytic CO2 reduction over partially oxidized 5 nm cobalt nanoparticles dispersed on single-layer nitrogen-doped graphene[J]. ACS Applied Materials & Interfaces,2018,10(51):44403-44414.
    [133]
    Lv K, Fan Y, Zhu Y, et al. Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol[J]. Journal of Materials Chemistry A,2018,6(12):5025-5031. doi: 10.1039/C7TA10802H
    [134]
    Tsujiguchi T, Kawabe Y, Jeong S, et al. Acceleration of electrochemical CO2 reduction to formate at the Sn/reduced graphene oxide interface[J]. ACS Catalysis,2021,11(6):3310-3318. doi: 10.1021/acscatal.0c04887
    [135]
    Huang J, Guo X, Wei Y, et al. A renewable, flexible and robust single layer nitrogen-doped graphene coating Sn foil for boosting formate production from electrocatalytic CO2 reduction[J]. Journal of CO2 Utilization,2019,33:166-170. doi: 10.1016/j.jcou.2019.05.026
    [136]
    Bi J, Li P, Liu J, et al. High-rate CO2 electrolysis to formic acid over a wide potential window: An electrocatalyst comprised of indium nanoparticles on chitosan-derived graphene [J]. Angewandte Chemie-International Edition, 2023, 62(36): e202307612.
    [137]
    Zhang X, Zhu Y, Liu Z, et al. Perforated nitrogen-rich graphene-like carbon nanolayers supported Cu-In catalyst for boosting CO2 electroreduction to CO[J]. Journal of Energy Chemistry,2022,75:383-390. doi: 10.1016/j.jechem.2022.09.003
    [138]
    Xiong W, Yang J, Shuai L, et al. CuSn alloy nanoparticles on nitrogen-doped graphene for electrocatalytic CO2 reduction[J]. Chemelectrochem,2019,6(24):5951-5957. doi: 10.1002/celc.201901381
    [139]
    Zhang X, Li F, Zhang Y, et al. Stannate derived bimetallic nanoparticles for electrocatalytic CO2 reduction[J]. Journal of Materials Chemistry A,2018,6(17):7851-7858. doi: 10.1039/C8TA02429D
    [140]
    Liu W, Zhao X, Pang L, et al. Promoting the activity and selectivity of Ni sites via chemical coordination with pyridinic nitrogen for CO2-to-CO electrochemical catalysis[J]. International Journal of Hydrogen Energy,2021,46(50):25448-25456. doi: 10.1016/j.ijhydene.2021.05.080
    [141]
    Dang Le Tri N, Lee C W, Na J, et al. Mass transport control by surface graphene oxide for selective CO production from electrochemical CO2 reduction[J]. ACS Catalysis,2020,10(5):3222-3231. doi: 10.1021/acscatal.9b05096
    [142]
    Yang Z, Yang C, Han J, et al. Boosting electrochemical CO2 reduction to formate using SnO2/graphene oxide with amide linkages[J]. Journal of Materials Chemistry A,2021,9(35):19681-19686. doi: 10.1039/D1TA02780H
    [143]
    Kou X, Zhang Y, Niu D, et al. Polyethylene oxide-engineered graphene with rich mesopores anchoring Bi2O3 nanoparticles for boosting CO2 electroreduction to formate [J]. Electrochimica Acta, 2022, 433: 141256.
    [144]
    Wang Y, Ding J, Zhao J, et al. Selective electrocatalytic reduction of CO2 to formate via carbon-shell-encapsulated In2O3 nanoparticles/graphene nanohybrids[J]. Journal of Materials Science & Technology,2022,121:220-226.
    [145]
    Sekar P, Calvillol L, Tubaro C, et al. Cobalt spinel nanocubes on N-doped graphene: A synergistic hybrid electrocatalyst for the highly selective reduction of carbon dioxide to formic acid[J]. ACS Catalysis,2017,7(11):7695-7703. doi: 10.1021/acscatal.7b02166
    [146]
    Saha S, Maitra S, Chattopadhyaya M, et al. Unveiling the electrocatalytic activity of crystal facet-tailored cobalt oxide-rGO heterostructure toward selective reduction of CO2 to ethanol[J]. ACS Applied Nano Materials,2022,5(8):10369-10382. doi: 10.1021/acsanm.2c01703
    [147]
    Wang Y, Lei H, Lu S, et al. Cu2O nano-flowers/graphene enabled scaffolding structure catalyst layer for enhanced CO2 electrochemical reduction [J]. Applied Catalysis B-Environmental, 2022, 305: 121022.
    [148]
    Li D, Liu T, Huang L, et al. Selective CO2-to-formate electrochemical conversion with core-shell structured Cu2O/Cu@C composites immobilized on nitrogen-doped graphene sheets[J]. Journal of Materials Chemistry A,2020,8(35):18302-18309. doi: 10.1039/D0TA05620K
    [149]
    Ning H, Mao Q, Wang W, et al. N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4[J]. Journal of Alloys and Compounds,2019,785:7-12. doi: 10.1016/j.jallcom.2019.01.142
    [150]
    Tan Z, Peng T, Tan X, et al. Controllable synthesis of leaf-like CuO nanosheets for selective CO2 electroreduction to ethylene[J]. Chemelectrochem,2020,7(9):2020-2025. doi: 10.1002/celc.202000235
    [151]
    Wang Y, Cheng L, Ge W, et al. Effect of charge on carbon support on the catalytic activity of Cu2O toward CO2 reduction to C2 products[J]. ACS Applied Materials & Interfaces,2023,15(19):23306-23315.
    [152]
    Zhi W, Liu Y, Shan S, et al. Efficient electroreduction of CO2 to C2-C3 products on Cu/Cu2O@N-doped graphene [J]. Journal of CO2 Utilization, 2021, 50: 101594.
    [153]
    Geioushy R A, Khaled M M, Alhooshani K, et al. Graphene/ZnO/Cu2O electrocatalyst for selective conversion of CO2 into n-propanol[J]. Electrochimica Acta,2017,245:448-454. doi: 10.1016/j.electacta.2017.05.171
    [154]
    Zeng L, Shi J, Luo J, et al. Silver sulfide anchored on reduced graphene oxide as a high-performance catalyst for CO2 electroreduction[J]. Journal of Power Sources,2018,398:83-90. doi: 10.1016/j.jpowsour.2018.07.049
    [155]
    Li F, Zhao S, Chen L, et al. Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide[J]. Energy & Environmental Science,2016,9(1):216-223.
    [156]
    Yue T, Huang H, Chang Y, et al. Controlled assembly of nitrogen-doped iron carbide nanoparticles on reduced graphene oxide for electrochemical reduction of carbon dioxide to syngas[J]. Journal of Colloid and Interface Science,2021,601:877-885. doi: 10.1016/j.jcis.2021.05.164
    [157]
    Hoang M T, Han C, Ma Z, et al. Efficient CO2 reduction to formate on CsPbI3 nanocrystals wrapped with reduced graphene oxide [J]. Nano-Micro Letters, 2023, 15(1): 161.
    [158]
    Liu E, Liu T, Ma X, et al. The electrocatalytic performance of Ni-AlO(OH)3@rGO for the reduction of CO2 to CO[J]. New Journal of Chemistry,2022,46(25):12023-12033. doi: 10.1039/D2NJ01025A
    [159]
    Shao S, Wen T, Wang Z, et al. Fabrication of SnSe2-graphene nanosheets for highly effectively electrocatalytic reduction of CO2 [J]. Electrochimica Acta, 2022, 434: 141331.
    [160]
    Zheng X T, Aanathanarayanan A, Luo K Q, et al. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications[J]. Small,2015,11(14):1620-1636. doi: 10.1002/smll.201402648
    [161]
    Wang X W, Sun G Z, Li N, et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy[J]. Chemical Society Reviews,2016,45(8):2239-2262. doi: 10.1039/C5CS00811E
    [162]
    Yan Y, Gong J, Chen J, et al. Recent advances on graphene quantum dots: From chemistry and physics to applications [J]. Advanced Materials, 2019, 31(21): 1808283.
    [163]
    Ma R, Wang K, Li C, et al. N-doped graphene for electrocatalytic O2 and CO2 reduction[J]. Nanoscale Advances,2022,4(20):4197-4209. doi: 10.1039/D2NA00348A
    [164]
    Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry,2011,3(8):634-641. doi: 10.1038/nchem.1095
    [165]
    Cheng N, Zhang L, Doyle Davis K, et al. Single-atom catalysts: From design to application[J]. Electrochemical Energy Reviews,2019,2(4):539-573. doi: 10.1007/s41918-019-00050-6
    [166]
    Gao D, Liu T, Wang G, et al. Structure sensitivity in single-atom catalysis toward CO2 electroreduction[J]. ACS Energy Letters,2021,6(2):713-727. doi: 10.1021/acsenergylett.0c02665
    [167]
    Vijay S, Gauthier J A, Heenen H H, et al. Dipole-field interactions determine the CO2 reduction activity of 2D Fe-N-C single-atom catalysts[J]. ACS Catalysis,2020,10(14):7826-7835. doi: 10.1021/acscatal.0c01375
    [168]
    Pan M, Li J, Zhang X, et al. Axially coordinated Co-N4 sites for the electroreduction of nitrobenzene[J]. Journal of Materials Chemistry A,2023,11(10):5095-5103. doi: 10.1039/D2TA07751E
    [169]
    Pan F, Yang Y. Designing CO2 reduction electrode materials by morphology and interface engineering[J]. Energy & Environmental Science,2020,13(8):2275-2309.
    [170]
    Mukherjee A, Abdinejad M, Mahapatra S S, et al. Metal sulfide-based nanomaterials for electrochemical CO2 reduction[J]. Journal of Materials Chemistry A,2023,11(17):9300-9332. doi: 10.1039/D2TA08209H
    [171]
    Peng L, Zhang Y, He R, et al. Research advances in electrocatalysts, electrolytes, reactors and membranes for the electrocatalytic carbon dioxide reduction reaction [J]. Acta Physico-Chimica Sinica, 2023, 39(12): 2302037.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article Views(354) PDF Downloads(148) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return