Volume 39 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
YANG Shang-juan, CAO Yun, HE Yan-bing, LV Wei. A review of the use of graphene-based materials in electromagnetic-shielding. New Carbon Mater., 2024, 39(2): 223-239. doi: 10.1016/S1872-5805(24)60840-1
Citation: YANG Shang-juan, CAO Yun, HE Yan-bing, LV Wei. A review of the use of graphene-based materials in electromagnetic-shielding. New Carbon Mater., 2024, 39(2): 223-239. doi: 10.1016/S1872-5805(24)60840-1

A review of the use of graphene-based materials in electromagnetic-shielding

doi: 10.1016/S1872-5805(24)60840-1
Funds:  National Key Research and Development Program of China (2021YFF0500600); National Natural Science Foundation of China (52022041, 52202041); Pearl River Talent Plan Local Innovation Research Team Project of Guangdong Province (2017 BT01N111); Foundation for Basic and Applied Basic Research of Guangdong Province (2021B1515120079).
More Information
  • The development of communication technology has had great benefits but the detrimental effects of electromagnetic radiation have also become important. There has therefore been growing research on electromagnetic shielding materials that have a wide shielding range, high absorption efficiency and stability. Graphene, a lightweight material with an exceptional electrical conductivity and a large specific surface area, has remarkable potential in this application. We first elucidate the fundamental principles of electromagnetic shielding and the structural characteristics of graphene-based materials while highlighting their unique electromagnetic shielding properties. We also provide an overview of common strategies for changing graphene-based materials including structural modification, heteroatom doping, and their incorporation in composite materials to improve this property. Structural modification can increase the losses of electromagnetic waves by absorption and multiple reflection, and heteroatom doping and incorporation in composite materials can increase the losses by interface polarization and magnetic effects. We also summarize various ways of modifying the materials so that they are lightweight and have a high shielding bandwidth.

  • loading
  • [1]
    Nan T, Lin H, Gao Y, et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas[J]. Nature Communications,2017,8(1):296-303. doi: 10.1038/s41467-017-00343-8
    [2]
    Cheng J, Zhang H, Ning M, et al. Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy?[J]. Advanced Functional Materials,2022,32(23):2200123-2200135. doi: 10.1002/adfm.202200123
    [3]
    El-Saleh A A, Alhammadi A, Shayea I, et al. Measuring and assessing performance of mobile broadband networks and future 5G trends[J]. Sustainability,2022,14(2):829-842. doi: 10.3390/su14020829
    [4]
    Chettri L, Bera R. A comprehensive survey on internet of things (IoT) toward 5G wireless systems[J]. IEEE Internet of Things Journal,2020,7(1):16-32. doi: 10.1109/JIOT.2019.2948888
    [5]
    Shahzad F, Alhabeb M, Hatter C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353(6304):1137-1140. doi: 10.1126/science.aag2421
    [6]
    Ai B, Molisch A F, Rupp M, et al. 5G key technologies for smart railways[J]. Proceedings of the IEEE,2020,108(6):856-893. doi: 10.1109/JPROC.2020.2988595
    [7]
    Abdul-Al M, Amar A S I, Elfergani I, et al. Wireless electromagnetic radiation assessment based on the specific absorption rate (SAR): A review case study[J]. Electronics,2022,11(4):511-521. doi: 10.3390/electronics11040511
    [8]
    Liu L, Deng H, Tang X, et al. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice[J]. Proceedings of the National Academy of Sciences,2021,118(31):e2105838118-e2105838124. doi: 10.1073/pnas.2105838118
    [9]
    González M, Pozuelo J, Baselga J. Electromagnetic shielding materials in GHz range[J]. The Chemical Record,2018,18(7-8):1000-1009. doi: 10.1002/tcr.201700066
    [10]
    Yun T, Kim H, Iqbal A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials,2020,32(9):1906769-1906800. doi: 10.1002/adma.201906769
    [11]
    Cheng J, Li C, Xiong Y, et al. Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials[J]. Nano-Micro Letters,2022,14(1):80-110. doi: 10.1007/s40820-022-00823-7
    [12]
    Wang L, Huang M, Qian X, et al. Confined magnetic-dielectric balance boosted electromagnetic wave absorption[J]. Small,2021,17(30):2100970-2100978. doi: 10.1002/smll.202100970
    [13]
    Kruželák J, Kvasničáková A, Hložeková K, et al. Progress in polymers and polymer composites used as efficient materials for EMW shielding[J]. Nanoscale Advances,2021,3(1):123-172. doi: 10.1039/D0NA00760A
    [14]
    Cao M-S, Wang X-X, Zhang M, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials[J]. Advanced Functional Materials,2019,29(25):1807398-1807452. doi: 10.1002/adfm.201807398
    [15]
    Wu Z, Cheng H-W, Jin C, et al. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption[J]. Advanced Materials,2022,34(11):2107538-2107567. doi: 10.1002/adma.202107538
    [16]
    Chen H, Ma W, Huang Z, et al. Graphene-based materials toward microwave and terahertz absorbing stealth technologies[J]. Advanced Optical Materials,2019,7(8):1801318-1801333. doi: 10.1002/adom.201801318
    [17]
    Shahzad F, Lee S H, Hong S M, et al. Segregated reduced graphene oxide polymer composite as a high performance electromagnetic interference shield[J]. Research on Chemical Intermediates,2018,44(8):4707-4719. doi: 10.1007/s11164-018-3274-7
    [18]
    Xia Y, Gao W, Gao C. A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption[J]. Advanced Functional Materials,2022,32(42):2204591-2204626. doi: 10.1002/adfm.202204591
    [19]
    Liu W, Speranza G. Tuning the oxygen content of reduced graphene oxide and effects on its properties[J]. ACS Omega,2021,6(9):6195-6205. doi: 10.1021/acsomega.0c05578
    [20]
    Cao M S, Wang X X, Zhang M, et al. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy[J]. Advanced Materials,2020,32(10):1907156-1907163. doi: 10.1002/adma.201907156
    [21]
    Li X H, Li X, Liao K N, et al. Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies[J]. ACS Applied Materials & Interfaces,2016,8(48):33230-33239.
    [22]
    Tan D, Jiang C, Li Q, et al. Development and current situation of flexible and transparent EM shielding materials[J]. Journal of Materials Science: Materials in Electronics,2021,32(21):25603-25630. doi: 10.1007/s10854-021-05409-4
    [23]
    Cao M, Han C, Wang X, et al. Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves[J]. Journal of Materials Chemistry C,2018,6(17):4586-4602. doi: 10.1039/C7TC05869A
    [24]
    Liu L, Chen X, Wang J, et al. Effects of Y and Zn additions on electrical conductivity and electromagnetic shielding effectiveness of Mg-Y-Zn alloys[J]. Journal of Materials Science & Technology,2019,35(6):1074-1080.
    [25]
    Pandey R, Tekumalla S, Gupta M. Enhanced (X-band) microwave shielding properties of pure magnesium by addition of diamagnetic titanium micro-particulates[J]. Journal of Alloys and Compounds,2019,770:473-482. doi: 10.1016/j.jallcom.2018.08.147
    [26]
    Choi H K, Lee A, Park M, et al. Hierarchical porous film with layer-by-layer assembly of 2D copper nanosheets for ultimate electromagnetic interference shielding[J]. ACS Nano,2021,15(1):829-839. doi: 10.1021/acsnano.0c07352
    [27]
    Xu R, Wang W, Yu D. Preparation of silver-plated hollow glass microspheres and its application in infrared stealth coating fabrics[J]. Progress in Organic Coatings,2019,131:1-10. doi: 10.1016/j.porgcoat.2019.02.009
    [28]
    Jin C, Lu Y, Tong G, et al. Excellent microwave absorbing properties of ZnO/ZnFe2O4/Fe core-shell microrods prepared by a rapid microwave-assisted hydrothermal-chemical vapor decomposition method[J]. Applied Surface Science,2020,531:147353-147363. doi: 10.1016/j.apsusc.2020.147353
    [29]
    Liang H, Xing H, Qin M, et al. Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials[J]. Composites Part A: Applied Science and Manufacturing,2020,135:105959-105971. doi: 10.1016/j.compositesa.2020.105959
    [30]
    Song Q, Chen B, Zhou Z, et al. Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance[J]. Science China Materials,2021,64(6):1437-1448. doi: 10.1007/s40843-020-1539-2
    [31]
    Chen Q, Zhang K, Huang L, et al. Reduced graphene oxide/MXene composite foam with multilayer structure for electromagnetic interference shielding and heat insulation applications[J]. Advanced Engineering Materials,2022,24(9):2200098-2200109. doi: 10.1002/adem.202200098
    [32]
    Hong S K, Kim K Y, Kim T Y, et al. Electromagnetic interference shielding effectiveness of monolayer graphene[J]. Nanotechnology,2012,23(45):455704-455709. doi: 10.1088/0957-4484/23/45/455704
    [33]
    Long MQ, Tang L, Wang D, et al. Theoretical predictions of size-dependent carrier mobility and polarity in graphene[J]. Journal of the American Chemical Society,2009,131(49):17728-17729. doi: 10.1021/ja907528a
    [34]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [35]
    Cao M S, Wang X X, Cao W Q, et al. Ultrathin graphene: Electrical properties and highly efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2015,3(26):6589-6599. doi: 10.1039/C5TC01354B
    [36]
    Xu L, Zhang W, Wang L, et al. Large-scale preparation of graphene oxide film and its application for electromagnetic interference shielding[J]. RSC Advances,2021,11(53):33302-33308. doi: 10.1039/D1RA06070H
    [37]
    Yang F, Xie P, Liu X, et al. High-orientation, defect-rich and porous graphene films for excellent electromagnetic shielding and thermal management[J]. Carbon,2023,214:118380-118387. doi: 10.1016/j.carbon.2023.118380
    [38]
    Zhou E, Xi J, Guo Y, et al. Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films[J]. Carbon,2018,133:316-322. doi: 10.1016/j.carbon.2018.03.023
    [39]
    Wei Q, Pei S, Qian X, et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film[J]. Advanced Materials,2020,32(14):1907411-1907419. doi: 10.1002/adma.201907411
    [40]
    Zhang L, Alvarez N T, Zhang M, et al. Preparation and characterization of graphene paper for electromagnetic interference shielding[J]. Carbon,2015,82:353-359. doi: 10.1016/j.carbon.2014.10.080
    [41]
    Yin X, Li H, Han L, et al. Lightweight and flexible 3D graphene microtubes membrane for high-efficiency electromagnetic-interference shielding[J]. Chemical Engineering Journal,2020,387:124025-124035. doi: 10.1016/j.cej.2020.124025
    [42]
    Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications,2014,5(1):5714-5721. doi: 10.1038/ncomms6714
    [43]
    Xu J, Li R, Ji S, et al. Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications[J]. ACS Nano,2021,15(5):8907-8918. doi: 10.1021/acsnano.1c01552
    [44]
    Shen B, Zhai W, Zheng W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMW shielding[J]. Advanced Functional Materials,2014,24(28):4542-4548. doi: 10.1002/adfm.201400079
    [45]
    Wang G, Zhao Y, Yang F, et al. Multifunctional integrated transparent film for efficient electromagnetic protection[J]. Nano-Micro Letters,2022,14(1):65-78. doi: 10.1007/s40820-022-00810-y
    [46]
    Xie Y, Liu S, Huang K, et al. Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric[J]. Advanced Materials,2022,34(30):2202982-2202990. doi: 10.1002/adma.202202982
    [47]
    Wang C, Xu Q, Hu J, et al. Graphene/SiC-coated textiles with excellent electromagnetic interference shielding, Joule heating, high-temperature resistance, and pressure-sensing performances[J]. Journal of Advanced Ceramics,2023,12(4):778-791. doi: 10.26599/JAC.2023.9220719
    [48]
    Huang Z, Chen H, Huang Y, et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam[J]. Advanced Functional Materials,2018,28(2):1704363-1704371. doi: 10.1002/adfm.201704363
    [49]
    Barani Z, Kargar F, Godziszewski K, et al. Graphene epoxy-based composites as efficient electromagnetic absorbers in the extremely high-frequency band[J]. ACS Applied Materials & Interfaces,2020,12(25):28635-28644.
    [50]
    陈愚, 侯辉, 王连杰, 等. 电磁屏蔽材料在发射箱上的应用[J]. 包装工程,2008,29(12):270-271. doi: 10.3969/j.issn.1001-3563.2008.12.102

    Chen Y, Hou H, Wang L J, et al. Application of electromagnetic shield material in launcher container[J]. Packaging Engineering,2008,29(12):270-271. doi: 10.3969/j.issn.1001-3563.2008.12.102
    [51]
    杨薇弘, 张秋禹. 石墨烯基复合材料在空天领域的应用进展[J]. 固体火箭技术,2021,44(06):712-717. doi: 10.7673/j.issn.1006-2793.2021.06.002

    Yang W H, Zhang Q Y. Progress in graphene-based composites for aerospace applications[J]. Journal of Solid Rocket Technology,2021,44(06):712-717. doi: 10.7673/j.issn.1006-2793.2021.06.002
    [52]
    张文博, 王佳宁, 卫林峰, 等. 功能型聚合物基电磁屏蔽材料的制备及应用[J]. 化学进展,2023,35(07):1065-1076. doi: 10.7536/PC221121

    Zhang W B, Wang J N, Wei L F, et al. Preparation and application of functional polymer-based electromagnetic shielding materials[J]. Progress in Chemistry,2023,35(07):1065-1076. doi: 10.7536/PC221121
    [53]
    Gupta K, Nine M J, Denton C, et al. Electromagnetic shielding using graphene material in wide bandwidth of 1.5GHz-10GHz; proceedings of the 2022 International Symposium on Antennas and Propagation (ISAP), F 31 Oct. -3 Nov. 2022, 2022 [C].
    [54]
    Lan C, Zou L, Qiu Y, et al. Tuning solid–air interface of porous graphene paper for enhanced electromagnetic interference shielding[J]. Journal of Materials Science,2020,55(15):6598-6609. doi: 10.1007/s10853-020-04433-9
    [55]
    Zhang Y, Huang Y, Chen H, et al. Composition and structure control of ultralight graphene foam for high-performance microwave absorption[J]. Carbon,2016,105:438-447. doi: 10.1016/j.carbon.2016.04.070
    [56]
    Shen B, Li Y, Yi D, et al. Microcellular graphene foam for improved broadband electromagnetic interference shielding[J]. Carbon,2016,102:154-160. doi: 10.1016/j.carbon.2016.02.040
    [57]
    Zhu E, Pang K, Chen Y, et al. Ultra-stable graphene aerogels for electromagnetic interference shielding[J]. Science China Materials,2023,66(3):1106-1113. doi: 10.1007/s40843-022-2208-x
    [58]
    Guo H, Hua T, Qin J, et al. A new strategy of 3D printing lightweight lamellar graphene aerogels for electromagnetic interference shielding and piezoresistive sensor applications[J]. Advanced Materials Technologies,2022,7(9):2101699-2101710. doi: 10.1002/admt.202101699
    [59]
    Zhang H, Luo N, Liu T, et al. Light-weight, low-loading and large-sheet reduced graphene oxide for high-efficiency microwave absorber[J]. Carbon,2022,196:1024-1034. doi: 10.1016/j.carbon.2022.05.062
    [60]
    蔡乐, 王华平, 于贵. 石墨烯带隙的调控及其研究进展[J]. 物理学进展,2016,36(01):21-33.

    Cai L, Wang H P, Yu G. Modifying bandgap of graphene and its recent developments[J]. Progress in Physics,2016,36(01):21-33.
    [61]
    Błoński P, Tuček J, Sofer Z, et al. Doping with graphitic nitrogen triggers ferromagnetism in graphene[J]. Journal of the American Chemical Society,2017,139(8):3171-3180. doi: 10.1021/jacs.6b12934
    [62]
    Xu J, Zhang X, Yuan H, et al. N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption[J]. Carbon,2020,159:357-365. doi: 10.1016/j.carbon.2019.12.020
    [63]
    Liu P, Zhang Y, Yan J, et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal,2019,368:285-298. doi: 10.1016/j.cej.2019.02.193
    [64]
    林少锋. 高可拉伸高导电化学交联和氮掺杂石墨烯薄膜及其电磁屏蔽性能研究 [D]; 国防科技大学, 2021.

    Lin S F. Stretchable chemically crosslinked and nitrogen doped graphene films with high electrical and electromagnetic shielding properties [D]; Graduate School of National University of Defense Technology, 2021.
    [65]
    Liu Y, Xu Z, Zhan J, et al. Superb electrically conductive graphene fibers via doping strategy[J]. Advanced Materials,2016,28(36):7941-7947. doi: 10.1002/adma.201602444
    [66]
    Peng H, Ming X, Pang K, et al. Highly electrically conductive graphene papers via catalytic graphitization[J]. Nano Research,2022,15(6):4902-4908. doi: 10.1007/s12274-022-4130-z
    [67]
    Umrao S, Gupta T K, Kumar S, et al. Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-Band[J]. ACS Applied Materials & Interfaces,2015,7(35):19831-19842.
    [68]
    Shahzad F, Zaidi S A, Koo C M. Synthesis of multifunctional electrically tunable fluorine-doped reduced graphene oxide at low temperatures[J]. ACS Applied Materials & Interfaces,2017,9(28):24179-24189.
    [69]
    Gavgani J N, Adelnia H, Zaarei D, et al. Lightweight flexible polyurethane/reduced ultralarge graphene oxide composite foams for electromagnetic interference shielding[J]. RSC Advances,2016,6(33):27517-27527. doi: 10.1039/C5RA25374H
    [70]
    Chen Z, Xu C, Ma C, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials,2013,25(9):1296-1300. doi: 10.1002/adma.201204196
    [71]
    Marka S K, Sindam B, James Raju K C, et al. Flexible few-layered graphene/poly vinyl alcohol composite sheets: Synthesis, characterization and EMW shielding in X-band through the absorption mechanism[J]. RSC Advances,2015,5(46):36498-36506. doi: 10.1039/C5RA04038H
    [72]
    Yousefi N, Sun X, Lin X, et al. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding[J]. Advanced Materials,2014,26(31):5480-5487. doi: 10.1002/adma.201305293
    [73]
    刘伟, 贾琨, 谷建宇, 等. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报,2022,36(09):31-35. doi: 10.11896/cldb.21020136

    Liu W, Jia K, Gu J Y, et al. The preparation of Ag/graphene composite film for thermal conductionand electromagnetic interference shielding[J]. Materials Reports,2022,36(09):31-35. doi: 10.11896/cldb.21020136
    [74]
    Wang Z, Mao B, Wang Q, et al. Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness[J]. Small,2018,14(20):1704332-1704339. doi: 10.1002/smll.201704332
    [75]
    Shu R, Zhang J, Wu Y, et al. Synthesis of nitrogen-doped reduced graphene oxide/cobalt–zinc ferrite composite aerogels with superior compression recovery and electromagnetic wave absorption performance[J]. Nanoscale,2021,13(8):4485-4495. doi: 10.1039/D0NR08777G
    [76]
    Lee S H, Kang D, Oh I K. Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film[J]. Carbon,2017,111:248-257. doi: 10.1016/j.carbon.2016.10.003
    [77]
    Song W L, Guan X T, Fan L Z, et al. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding[J]. Journal of Materials Chemistry A,2015,3(5):2097-2107. doi: 10.1039/C4TA05939E
    [78]
    Wang Y, Yao L, Zheng Q, et al. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding[J]. Nano Research,2022,15(7):6751-6760. doi: 10.1007/s12274-022-4428-x
    [79]
    Sadek R, Sharawi M S, Dubois C, et al. Reduced graphene oxide/barium ferrite ceramic nanocomposite synergism for high EMW wave absorption[J]. ACS Omega,2023,8(17):15099-15113. doi: 10.1021/acsomega.2c08168
    [80]
    Wan Y J, Zhu P L, Yu S H, et al. Graphene paper for exceptional EMW shielding performance using large-sized graphene oxide sheets and doping strategy[J]. Carbon,2017,122:74-81. doi: 10.1016/j.carbon.2017.06.042
    [81]
    Zhao Y, Hao L, Zhang X, et al. A novel strategy in electromagnetic wave absorbing and shielding materials design: Multi-responsive field effect[J]. Small Science,2022,2(2):2100077-2100092. doi: 10.1002/smsc.202100077
    [82]
    Clancy A J, Au H, Rubio N, et al. Understanding and controlling the covalent functionalisation of graphene[J]. Dalton Transactions,2020,49(30):10308-10318. doi: 10.1039/D0DT01589J
    [83]
    Zhang M, Han C, Cao W Q, et al. A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor[J]. Nano-Micro Letters,2020,13(1):27-39.
    [84]
    Huang L, Duan Y, Dai X, et al. Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics[J]. Small,2019,15(40):1902730-1902737. doi: 10.1002/smll.201902730
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article Views(333) PDF Downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return