Turn off MathJax
Article Contents
ZHANG Rui, TIAN Yong, ZHANG Wei-li, SONG Jia-yin, MIN Jie, PANG Bo, CHEN Jian-jun. Electrochemical method for impurity removal of graphite anode in spent ternary lithium-ion batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60843-7
Citation: ZHANG Rui, TIAN Yong, ZHANG Wei-li, SONG Jia-yin, MIN Jie, PANG Bo, CHEN Jian-jun. Electrochemical method for impurity removal of graphite anode in spent ternary lithium-ion batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60843-7

Electrochemical method for impurity removal of graphite anode in spent ternary lithium-ion batteries

doi: 10.1016/S1872-5805(24)60843-7
More Information
  • Author Bio:

    ZHANG Rui. E-mail: zrhitsz22334@163.com

  • Corresponding author: CHEN Jian-jun,professor. E-mail: chenjj08@126.com
  • Received Date: 2023-10-27
  • Accepted Date: 2024-02-02
  • Rev Recd Date: 2024-01-31
  • Available Online: 2024-02-21
  • The application of lithium-ion batteries (LIBs) is becoming increasingly widespread, and a large number of LIBs are entering the peak period of retirement. The recycling and comprehensive utilization of spent LIBs has attracted high attention from countries around the world. Due to the graphite anode in spent LIBs, it’s recycling does not require high-temperature graphitization, the unchanged layered structure of and only focuses on the removal of internal impurities. In this study, we innovatively used electrochemical treatment to deeply remove internal metal impurities after heat treatment, ultrasonic separation and acid leaching of spent graphite. By comparing and analyzing the graphite in different recovery stages, it is found that the presence of organic impurities in graphite will seriously affect the electrochemical performance. The presence of trace inorganic impurities such as Cu and Fe has little effect on the initial discharge specific capacity, but it will reduce the cycle stability of graphite. The content of main metal impurities in the final recycled graphite is less than 20 mg/kg. The discharge specific capacity reaches 358.7 mAh/g at 0.1 C, and the capacity remains 95.85% after 150 cycles. Compared with the reported methods for recycling spent graphite, this method can deeply remove impurities inside the graphite, solve the current problems of high acid and alkali consumption, incomplete impurity removal and high energy consumption. The recycled graphite anode shows good electrochemical performance, which provides, a new recycling and regeneration path for spent LIBs graphite anode.
  • loading
  • [1]
    Wu N N, Wu K, Gao Y, et al. Advantages of lithium ion batteries in energy storage field[J]. Advance Materials Industry,2010(10):48.
    [2]
    Yang J, Jiang L X, Liu F Y, et al. Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant[J]. Transactions of Nonferrous Metals Society of China,2020,30:2256-2264. doi: 10.1016/S1003-6326(20)65376-6
    [3]
    Contestabile M, Panero S, Scrosati B. A laboratory-scale lithium-ion battery recycling process[J]. Journal of Power Sources,2001,92(1-2):65-69. doi: 10.1016/S0378-7753(00)00523-1
    [4]
    Wohlfahrt-Mehrens M, Vogler C, Garche J. Aging mechanisms of lithium cathode materials[J]. Journal of Power Sources,2004,127(1-2):58-64. doi: 10.1016/j.jpowsour.2003.09.034
    [5]
    Wang H, Jang Y I, Huang B, et al. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries[J]. Journal of the Electrochemical Society,1999,146(2):473-480. doi: 10.1149/1.1391631
    [6]
    Arora P, White R E, Doyle M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society,1998,145(10):3647-3667. doi: 10.1149/1.1838857
    [7]
    Sloop S E, Pugh J K, Wang S, et al. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions[J]. Electrochemical and Solid-State Letters,2004,4(4):A42-A44.
    [8]
    Murphy S J, Grigahcene A, Niemczura E, et al. Corrosion of lithium-ion battery current collectors[J]. Journal of the Electrochemical Society,1999,146(2):448-456. doi: 10.1149/1.1391627
    [9]
    Bai Y C, Muralidharan N, Sun Y K, et al. Energy and environmental aspects in recycling lithium-ion batteries: Concept of battery identity global passport[J]. Materials Today,2020,41:304-15. doi: 10.1016/j.mattod.2020.09.001
    [10]
    杨涛, 刘文凤, 马梦月, 等. 三元锂离子动力电池衰减机理[J]. 应用化学,2020,37(10):1181-1186. doi: 10.11944/j.issn.1000-0518.2020.10.200116

    Yang T, Liu W F, Ma M Y, et al. Fade mechanism of ternary lithium ion power battery[J]. Chinese Journal of Applied Chemistry,2020,37(10):1181-1186. doi: 10.11944/j.issn.1000-0518.2020.10.200116
    [11]
    阮一钊, 田艳红, 李守涛, 等. LiNi0. 5Co0.2Mn0.3O2/石墨电池高温失效的机理[J]. 电池,2020,50(03):220-223.

    Ruan Y Z, Tian Y H, Li S T, et al. High temperature failure mechanism of LiNi0.5Co0.2Mn0.3O2/graphite battery[J]. Battery Bimonthly,2020,50(03):220-223.
    [12]
    Bi H J, Zhu H B, Zu L, et al. Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries[J]. Waste Management & Research:the Journal of the International Solid Wastes and Public Cleansing Association, ISWA,2019,37(8):767-780.
    [13]
    Wang F F, Zhang T, He Y Q, et al. Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment[J]. Journal of Cleaner Production,2018,185:646-652. doi: 10.1016/j.jclepro.2018.03.069
    [14]
    Zhang G W, He Y Q, Feng Y, et al. Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis[J]. Journal of Cleaner Production,2018,199:62-68. doi: 10.1016/j.jclepro.2018.07.143
    [15]
    Liu K, Yang S L, Luo L Q, et al. From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries[J]. Electrochimica Acta,2020,356:136856. doi: 10.1016/j.electacta.2020.136856
    [16]
    Natarajan S, Shanthana L D, Bajaj H C, et al. Recovery and utilization of graphite and polymer materials from spent lithium-ion batteries for synthesizing polymer-graphite nanocomposite thin films[J]. Journal of Enviromental Chemical Engineering,2015,3(4):2538-2545. doi: 10.1016/j.jece.2015.09.011
    [17]
    Yang Y, Song S L, Lei S Y, et al. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery[J]. Waste Management,2019,85:529-537. doi: 10.1016/j.wasman.2019.01.008
    [18]
    Zhang J, Li X L, Song D W, et al. Effective regeneration of anode material recycled from scrapped Li-ion batteries[J]. Journal of Power Sources,2018,390:38-44. doi: 10.1016/j.jpowsour.2018.04.039
    [19]
    Yang K, Gong P Y, Tian Z L, et al. Recycling spent carbon cathode by a roasting method and its application in Li-ion batteries anodes[J]. Journal of Cleaner Production,2020,261:121090-121090. doi: 10.1016/j.jclepro.2020.121090
    [20]
    Zhang J, Li X L, Song D W, et al. Effective regeneration of anode material recycled from scrapped Li-ion batteries[J]. Journal of Power Sources,2018,390:38-44. doi: 10.1016/j.jpowsour.2018.04.039
    [21]
    Wang A P, Kadam S, Li H, et al. Review on modeling of the anode solid electrolyte interphase(SEI) for lithium-ion batteries[J]. npj Computational Materials,2018,4(1):359-367.
    [22]
    Ma Z, Zhuang Y C, Deng Y M, et al. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries[J]. Journal of Power Sources,2018,376:91-99. doi: 10.1016/j.jpowsour.2017.11.038
    [23]
    Wang H R, Huang Y S, Huang C F, et al. Reclaiming graphite from spent lithium ion batteries ecologically and economically[J]. Electrochimica Acta,2019,313:423-431. doi: 10.1016/j.electacta.2019.05.050
    [24]
    Huang Q, Ni S, Jiao M, et al. Aligned carbon-based electrodes for fast-charging batteries: A Review[J]. Small,2021,17(48):2007676-2007701. doi: 10.1002/smll.202007676
    [25]
    Wang G, Pan C, Wang L P, et al. Activated carbon nanofiber webs made by electrospinning for capacitive deionization[J]. Electrochimica Acta,2012,69:65-70. doi: 10.1016/j.electacta.2012.02.066
    [26]
    Shao H, Wu Y C, Lin Z F, et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chemical Society Reviews,2020,49(10):3005-3039. doi: 10.1039/D0CS00059K
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article Views(78) PDF Downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return