Volume 39 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
ZHANG Chun-hui, ZHANG Jia-yuan, ZHAN Jie-yang, YU Jian, FAN Lin-lin, YANG An-ping, LIU hong, GAO Guang-gang. A new anode material for high rate and long life lithium/sodium storage. New Carbon Mater., 2024, 39(2): 308-320. doi: 10.1016/S1872-5805(24)60845-0
Citation: ZHANG Chun-hui, ZHANG Jia-yuan, ZHAN Jie-yang, YU Jian, FAN Lin-lin, YANG An-ping, LIU hong, GAO Guang-gang. A new anode material for high rate and long life lithium/sodium storage. New Carbon Mater., 2024, 39(2): 308-320. doi: 10.1016/S1872-5805(24)60845-0

A new anode material for high rate and long life lithium/sodium storage

doi: 10.1016/S1872-5805(24)60845-0
Funds:  This work was supported by the National Natural Science Foundation of China (22201098), the Natural Science Foundation of Shandong Province (ZR2021QB005), and the Jinan City “New University 20” Project (202228113)
More Information
  • Author Bio:

    张春晖,硕士研究生. E-mail:zhangch0221@163.com

  • Corresponding author: FAN Lin-lin, Ph.D, Associate Professor. E-mail: mse_fanll@ujn.edu.cn; GAO Guang-gang, Ph.D, Professor. E-mail: mse_gaogg@ujn.edu.cn
  • Received Date: 2023-11-10
  • Accepted Date: 2024-02-04
  • Rev Recd Date: 2024-02-03
  • Available Online: 2024-02-27
  • Publish Date: 2024-04-03
  • It is imperative to design suitable anode materials for both lithium-ion (LIBs) and sodium-ion batteries (SIBs) with a high-rate performance and ultralong cycling life. We fabricated a MoO2/MoS2 heterostructure that was then homogeneously distributed in N,S-doped carbon nanofibers (MoO2/MoS2@NSC) by electrospinning and sulfurization. The one-dimensional carbon fiber skeleton serves as a conductive frame to decrease the diffusion pathway of Li+/Na+, while the N/S doping creates abundant active sites and significantly improves the ion diffusion kinetics. Moreover, the deposition of MoS2 nanosheets on the MoO2 bulk phase produces an interface that enables fast Li+/Na+ transport, which is crucial for achieving high efficiency energy storage. Consequently, as the anode for LIBs, MoO2/MoS2@NSC gives an excellent cycling stability of 640 mAh g1 for 2000 cycles under 5.0 A g1 with an ultralow average capacity drop of 0.002% per cycle and an exceptional rate capability of 614 mAh g1 at 10.0 A g1. In SIBs, it also produces a significantly better electrochemical performance (reversible capacity of 242 mAh g1 under 2.0 A g1 for 2000 cycles and 261 mAh g1 under 5.0 A g1). This work shows how introducing a novel interface in the anode can produce rapid Li+/Na+ storage kinetics and a long cycling performance.
  • loading
  • [1]
    Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359-367. doi: 10.1038/35104644
    [2]
    Li X, Chu Q, Song M Q, et al. Porous CoO/Co3O4 nanoribbons as a superior performance anode material for lithium-ion batteries[J]. Applied Surface Science,2023,618:156658. doi: 10.1016/j.apsusc.2023.156658
    [3]
    Liu S Y, Jia K L, Yang J, et al. Encapsulating flower-like MoS2 nanosheets into interlayer of nitrogen-doped graphene for high-performance lithium-ion storage[J]. Chemical Engineering Journal,2023,475:146181. doi: 10.1016/j.cej.2023.146181
    [4]
    Che X G, Jin J, Zhang Y X, et al. Fabrication of coal-based oxygen-rich porous carbon nanosheets for high-performance supercapacitors[J]. New Carbon Materials,2023,38(6):1050-1058. doi: 10.1016/S1872-5805(23)60752-8
    [5]
    Wang M, Che X G, Liu S Y, et al. A review of carbon-based cathode materials for zinc-ion capacitors[J]. New Carbon Materials,2021,36(1):155-166.
    [6]
    Zheng H, Chen X, Li L, et al. Synthesis of NiS2/reduced graphene oxide nanocomposites as anodes materials for high-performance Sodium and Potassium ion batteries[J]. Materials Research Bulletin,2021,142:111430. doi: 10.1016/j.materresbull.2021.111430
    [7]
    Nayak P K, Yang L T, Brehm W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges and surprises[J]. Angewandte Chemie International Edition,2018,57(1):102-120. doi: 10.1002/anie.201703772
    [8]
    Zang Y, Lu D Q, Lan Y Q. Covalent organic frameworks: A new platform for next-generation batteries of Na-, K- and Zn-ions[J]. Science Bulletin,2022,67(16):1621-1624. doi: 10.1016/j.scib.2022.07.014
    [9]
    Zhang T Y, Ran F. Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery[J]. Advanced Functional Materials,2021,31(17):2010041. doi: 10.1002/adfm.202010041
    [10]
    Cherevan A S, Nandan S P, Roger I, et al. Polyoxometalates on functional substrates: Concepts, synergies and future perspectives[J]. Advanced Science,2020,7(8):1903511. doi: 10.1002/advs.201903511
    [11]
    Wang J, Zhu W J, Zhang J Y, et al. Ratiometric response to formaldehyde by 3D silver SERS substrate with polyoxometalate as internal label[J]. Sensors and Actuators B: Chemical,2023,381:133450. doi: 10.1016/j.snb.2023.133450
    [12]
    Guo L, He L, Zhuang Q H, et al. Recent advances in confining polyoxometalates and the applications[J]. Small, 2023, 2207315.
    [13]
    Zhang J Y, Wang X Y, Wang G, et al. Ultrasensitive photochromism and impedance dual response to weak visible light by solvated Pb(II) modified polyoxomolybdate[J]. Chinese Chemical Letters,2023,34(2):107231. doi: 10.1016/j.cclet.2022.02.036
    [14]
    Gong M D, Mu W X, Cao Y D, et al. A giant polyoxomolybdate molecular catalyst with unusual Mo6+/Mo5+ synergistic mechanism for oxidation of hydroxyfurfural under atmospheric pressure[J]. Fuel Processing Technology,2023,242:107635. doi: 10.1016/j.fuproc.2022.107635
    [15]
    Zhang X Z, Zhu W J, Yang Z X, et al. Ultrasensitive photochromic and Raman dual response to ethylenediamine gas through polyoxometalate-viologen crystalline hybrid[J]. Journal of Materials Chemistry C,2022,10(41):15451-15457. doi: 10.1039/D2TC03053E
    [16]
    Fan L L, Wang M L, Dong X Y, et al. V-substitution function on polyoxometalate catalyst for rapid conversion of polyselenides in Li-Se batteries[J]. Chemical Engineering Journal,2022,449:137819. doi: 10.1016/j.cej.2022.137819
    [17]
    Dong X Y, Cao Y D, Zhang J Y, et al. An effective implantation strategy of Mo atom in polyoxometalate to boost high-performance lithium-sulfur batteries[J]. Applied Surface Science,2023,615:156348. doi: 10.1016/j.apsusc.2023.156348
    [18]
    Wei T, Zhang M, Wu P, et al. POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage[J]. Nano Energy,2017,34:205-214. doi: 10.1016/j.nanoen.2017.02.028
    [19]
    Song J, Jiang Y Y, Lu Y Z, et al. Effective polysulfide adsorption and catalysis by polyoxometalate contributing to high-performance Li-S batteries[J]. Materials Today Nano,2022,19:100231. doi: 10.1016/j.mtnano.2022.100231
    [20]
    Wang X K, Li Z Q, Zhang Z W, et al. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries[J]. Nanoscale,2015,7(8):3604-3613. doi: 10.1039/C4NR05789A
    [21]
    Qiu J Y C, Yang Z X, Li Q, et al. Formation of N-doped molybdenum carbide confined in hierarchical and hollow carbon nitride microspheres with enhanced sodium storage properties[J]. Journal of Materials Chemistry A,2016,4(34):13296-13306. doi: 10.1039/C6TA05025E
    [22]
    Sun P L, Zhang W X, Hu X L, et al. Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A,2014,2(10):3498-3504. doi: 10.1039/C3TA13994H
    [23]
    Jia G C, Wang H W, Chao D L, et al. Ultrathin MoSe2@N-doped carbon composite nanospheres for stable Na-ion storage[J]. Nanotechnology,2017,28(42):42LT01. doi: 10.1088/1361-6528/aa8c55
    [24]
    Wang X, Sun P P, Qin J W, et al. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries[J]. Nanoscale,2016,8(19):10330-10338. doi: 10.1039/C6NR01774F
    [25]
    Yao C, Zhang H M, Liu T, et al. Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery[J]. Journal of Power Sources,2012,218:455-461. doi: 10.1016/j.jpowsour.2012.06.072
    [26]
    Yan Y, Li P Q, Gu Z Y, et al. A low-surface-energy design to allogeneic sulfide heterostructures anchored on ultrathin graphene sheets for fast sodium storage[J]. Chemical Engineering Journal,2022,432:134195. doi: 10.1016/j.cej.2021.134195
    [27]
    Cheng J Y, Niu Z L, Zhao Z P, et al. Enhanced ion/electron migration and sodium storage driven by different MoS2-ZnIn2S4 heterointerfaces[J]. Advanced Energy Materials,2023,13(5):2203248. doi: 10.1002/aenm.202203248
    [28]
    Zhang C F, Li H, Zeng X H, et al. Accelerated diffusion kinetics in ZnTe/CoTe2 heterojunctions for high rate potassium storage[J]. Advanced Energy Materials,2022,12(41):2202577. doi: 10.1002/aenm.202202577
    [29]
    Yu J, Wang M L, Yang Z X, et al. Polyoxometalate@MOF derived porous carbon-supported MoO2/MoS2 octahedra boosting high-rate lithium storage[J]. Dalton Transactions,2021,50(41):14595-14601. doi: 10.1039/D1DT02475B
    [30]
    Ding J, Sheng R, Zhang Y, et al. Fe2O3/MoO3@NG heterostructure enables high pseudocapacitance and fast electrochemical reaction kinetics for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2022,14(33):37747-37758.
    [31]
    Liu X Z, Cheng Q, Zhong W T, et al. Construction of defective MoxW1-xS2/Cu7.2S4 polyhedral heterostructures for fast sodium storage[J]. Chemical Engineering Journal,2023,451:138645. doi: 10.1016/j.cej.2022.138645
    [32]
    Jia M, Jin Y H, Zhao C C, et al. ZnSe nanoparticles decorated with hollow N-doped carbon nanocubes for high-performance anode material of sodium ion batteries[J]. Journal of Alloys and Compounds,2020,831:154749. doi: 10.1016/j.jallcom.2020.154749
    [33]
    Liu H D, Hu H T, Wang J, et al. Hierarchical ternary MoO2/MoS2/heteroatom-doped carbon hybrid materials for high-performance lithium-ion storage[J]. ChemElectroChem,2016,3(6):922-932. doi: 10.1002/celc.201600062
    [34]
    Liu A F, Guan Y M, Guo Z C, et al. Carbon/MoO2@MoS2 ternary synergetic systems: Heterojunction structures with effective self-built electric fields for high-performance lithium ion batteries[J]. Solid State Ionics,2019,340:115021. doi: 10.1016/j.ssi.2019.115021
    [35]
    Sun Y M, Hu X L, Luo W, et al. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries[J]. ACS Nano,2011,5(9):7100-7107. doi: 10.1021/nn201802c
    [36]
    Chen Z, Yin D G, Zhang M. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries[J]. Small,2018,14(17):1703818. doi: 10.1002/smll.201703818
    [37]
    Dong W D, Li C F, Wang C Y, et al. Phase conversion accelerating “Zn-Escape” effect in ZnSe-CFs heterostructure for high performance sodium-ion half/full batteries[J]. Small,2022,18(43):2105169. doi: 10.1002/smll.202105169
    [38]
    Li X M, Zai J T, Xiang S J, et al. Regeneration of metal sulfides in the delithiation process: The key to cyclic stability[J]. Advanced Energy Materials,2016,6(19):1601056. doi: 10.1002/aenm.201601056
    [39]
    Zhao X W, Liu Z C, Xiao W Y, et al. Low crystalline MoS2 nanotubes from MoS2 nanomasks for lithium ion battery applications[J]. ACS Applied Nano Materials,2020,3(8):7580-7586. doi: 10.1021/acsanm.0c01212
    [40]
    Guo P Q, Sun K, Liu D Q, et al. Molybdenum disulfide nanosheets embedded in hollow nitrogen-doped carbon spheres for efficient lithium/sodium storage with enhanced electrochemical kinetics[J]. Electrochimica Acta,2018,283:646-654. doi: 10.1016/j.electacta.2018.06.141
    [41]
    Zheng C, Luo N J, Huang S P, et al. Nanocomposite of Mo2N quantum dots@MoO3@nitrogen-doped carbon as a high-performance anode for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering,2019,7(12):10198-10206.
    [42]
    Xiao D B, Zhang J Y, Li X, et al. Nanocarved MoS2-MoO2 hybrids fabricated using in situ grown MoS2 as nanomasks[J]. ACS Nano,2016,10(10):9509-9515. doi: 10.1021/acsnano.6b04643
    [43]
    Xu Z W, Wang H L, Li Z, et al. Sulfur refines MoO2 distribution enabling improved lithium ion battery performance[J]. The Journal of Physical Chemistry C,2014,118(32):18387-18396. doi: 10.1021/jp504721y
    [44]
    Wang X J, Zhang S, Shan Y, et al. In situ heterogeneous interface construction boosting fast ion/electron transfer for high-performances lithium/potassium storage[J]. Energy Storage Materials,2021,37:55-66. doi: 10.1016/j.ensm.2021.01.027
    [45]
    Liu X F, Mei P, Dou Y, et al. Heteroarchitecturing a novel three-dimensional hierarchical MoO2/MoS2/carbon electrode material for high-energy and long-life lithium storage[J]. Journal of Materials Chemistry A,2021,9(22):13001-13007. doi: 10.1039/D1TA01706C
    [46]
    Yang W J, Han L J, Liu X J, et al. Template-free fabrication of 1D core-shell MoO2@MoS2/nitrogen-doped carbon nanorods for enhanced lithium/sodium-ion storage[J]. Journal of Colloid and Interface Science,2021,588:804-812. doi: 10.1016/j.jcis.2020.11.115
    [47]
    Wu C L, Hu J L, Yao Z G, et al. Highly reversible conversion anodes composed of ultralarge monolithic grains with seamless intragranular binder and wiring network[J]. ACS Applied Materials & Interfaces,2019,11(26):23280-23290.
    [48]
    Deng Z N, Hu Y J, Ren D Y, et al. Reciprocal hybridization of MoO2 nanoparticles and few-layer MoS2 for stable lithium-ion batteries[J]. Chemical Communications,2015,51(72):13838-13841. doi: 10.1039/C5CC05069C
    [49]
    Xie J R, Zhu K J, Min J, et al. In-situ grown ultrathin MoS2 nanosheets on MoO2 hollow nanospheres to synthesize hierarchical nanostructures and its application in lithium-ion batteries[J]. Ionics,2019,25:1487-1494. doi: 10.1007/s11581-019-02863-3
    [50]
    Sun H, Xu J L, Huang J D, et al. Facile synthesis of hetero-structured few-layer MoS2-coated MoO2 as superior anode materials of lithium ion batteries[J]. Journal of Alloys and Compounds,2021,851:156726. doi: 10.1016/j.jallcom.2020.156726
    [51]
    Wang X, Xiao Y, Wang J Q, et al. Facile fabrication of molybdenum dioxide/nitrogen-doped graphene hybrid as high performance anode material for lithium ion batteries[J]. Journal of Power Sources,2015,274:142-148. doi: 10.1016/j.jpowsour.2014.10.031
    [52]
    Xu Z W, Wang T, Kong L, et al. MoO2@MoS2 nanoarchitectures for high-loading advanced lithium-ion battery anodes[J]. Particle & Particle Systems Characterization,2017,34(3):1600223.
    [53]
    Zhang R, Tang Z, Wang H Y, et al. The fabrication of hierarchical MoO2@MoS2/rGO composite as high reversible anode material for lithium ion batteries[J]. Electrochimica Acta,2020,364:136996. doi: 10.1016/j.electacta.2020.136996
    [54]
    Qin J, Sari H M K, Wang X J, et al. Controlled design of metal oxide-based (Mn2+/Nb5+) anodes for superior sodium-ion hybrid supercapacitors: Synergistic mechanisms of hybrid ion storage[J]. Nano Energy,2020,71:104594. doi: 10.1016/j.nanoen.2020.104594
    [55]
    Zhou Y L, Zhang M, Han Q, et al. Hierarchical 1 T-MoS2/MoOx@NC microspheres as advanced anode materials for potassium/sodium-ion batteries[J]. Chemical Engineering Journal,2022,428:131113. doi: 10.1016/j.cej.2021.131113
    [56]
    Shi N X, Xi B J, Huang M, et al. Hierarchical octahedra constructed by Cu2S/MoS2 $ \subset $ carbon framework with enhanced sodium storage[J]. Small,2020,16(23):2000952. doi: 10.1002/smll.202000952
    [57]
    Wang M L, Yin D, Cao Y D, et al. Surface modification of hollow capsule by Dawson-type polyoxometalate as sulfur hosts for ultralong-life lithium-sulfur batteries[J]. Chinese Chemical Letters,2022,33(9):4350-4356. doi: 10.1016/j.cclet.2021.11.043
    [58]
    Fan L L, Lei S L, Sari H M K, et al. Controllable S-vacancies of monolayered Mo-S nanocrystals for highly harvesting lithium storage[J]. Nano Energy,2020,78:105235. doi: 10.1016/j.nanoen.2020.105235
    [59]
    Zhan W W, Zhu M, Lan J L, et al. 1D Sb2S3@nitrogen-doped carbon coaxial nanotubes uniformly encapsulated within 3D porous graphene aerogel for fast and stable sodium storage[J]. Chemical Engineering Journal,2021,408:128007. doi: 10.1016/j.cej.2020.128007
    [60]
    Liu H, Liu B H, Guo H, et al. N-doped C-encapsulated scale-like yolk-shell frame assembled by expanded planes few-layer MoSe2 for enhanced performance in sodium-ion batteries[J]. Nano Energy,2018,51:639-648. doi: 10.1016/j.nanoen.2018.07.021
    [61]
    Zhao X, Wang H E, Yang Y, et al. Reversible and fast Na-ion storage in MoO2/MoSe2 heterostructures for high energy-high power Na-ion capacitors[J]. Energy Storage Materials,2018,12:241-251. doi: 10.1016/j.ensm.2017.12.015
    [62]
    Feng J, Luo S H, Li P W, et al. Unveiling the efficient sodium storage and mechanism of MOFs-induced CoSe@N-doped carbon polyhedrons decorated with 2H-MoSe2 nanosheets[J]. Applied Surface Science,2023,619:156775. doi: 10.1016/j.apsusc.2023.156775
    [63]
    Zhao W X, Ci S Q, Hu X, et al. Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofiber anodes for sodium ion batteries[J]. Nanoscale,2019,11(11):4688-4695. doi: 10.1039/C9NR00160C
    [64]
    Dong S H, Li C X, Li Z Q, et al. Mesoporous hollow Sb/ZnS@C core-shell heterostructures as anodes for high-performance sodium-ion batteries[J]. Small,2018,14(16):1704517. doi: 10.1002/smll.201704517
  • 20240211 Supporting information.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(73) PDF Downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return