Turn off MathJax
Article Contents
LU Ya-ping, WANG Hong-xing, LIU Lan-tao, PANG Wei-wei, CHEN Xiao-hong. Boron and nitrogen co-doped sodium alginate-based porous carbon for durable and fast Zn-ion hybrid capacitor. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60847-4
Citation: LU Ya-ping, WANG Hong-xing, LIU Lan-tao, PANG Wei-wei, CHEN Xiao-hong. Boron and nitrogen co-doped sodium alginate-based porous carbon for durable and fast Zn-ion hybrid capacitor. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60847-4

Boron and nitrogen co-doped sodium alginate-based porous carbon for durable and fast Zn-ion hybrid capacitor

doi: 10.1016/S1872-5805(24)60847-4
Funds:  This work was supported by the National Natural Science Foundation of China (52372039)
More Information
  • Author Bio:

    卢亚平和王红星为共同第一作者

  • Corresponding author: CHEN Xiao-hong: E-mail: chenxh@mail.buct.edu.cn
  • Received Date: 2024-01-26
  • Accepted Date: 2024-03-22
  • Rev Recd Date: 2024-03-21
  • Available Online: 2024-03-27
  • In recent years, zinc-ion hybrid capacitors (ZIHCs) have attracted increasing attention due to their environmental friendliness and excellent electrochemical properties. However, the performance of ZIHCs is mainly limited by the electrochemical performance of the cathode, so it is necessary to develop an advanced cathode material. In this work, the N, B co-doped sodium alginate-based porous carbon (NBSPC) is prepared by one-step co-carbonization using sodium alginate as matrix and NH4B5O8 as N and B sources. This N, B co-doping strategy can make the pore structure of porous carbon materials more reasonable and increase surface functional groups, greatly improving the capacitive behavior of the raw materials and thus improving their electrochemical performance. When used as the cathode in ZIHCs, NBSPC shows excellent rate performance (85.4 mA h g−1 even at ultra-high current density of 40 A g−1) and cycling stability (15000 cycles at 20 A g−1 with a capacity retention rate of 94.5%).
  • loading
  • [1]
    Wang D, Zhang J, Li X, et al. Woven microsphere architected by carbon nanotubes as high-performance potassium ion batteries anodes[J]. Chemical Engineering Journal,2022,429:132272. doi: 10.1016/j.cej.2021.132272
    [2]
    Liu L, Lu Y, Qiu D, et al. Sodium alginate-derived porous carbon: Self-template carbonization mechanism and application in capacitive energy storage[J]. Journal of Colloid and Interface Science,2022,620:284-292. doi: 10.1016/j.jcis.2022.04.022
    [3]
    Lu Y, Liu L, Zhang R, et al. Sodium alginate-derived micropore dominated carbon 3D architectures through dual template engineering for high-performance Zn-ion hybrid capacitors[J]. Applied Surface Science,2022,604:154631. doi: 10.1016/j.apsusc.2022.154631
    [4]
    Liu L, Du B, Liu R, et al. N-Doped hierarchically porous carbon aerogels by controlling the Zn–chitosan complex ratio for high-performance supercapacitors[J]. Energy & Fuels,2022,36(11):5920-5927.
    [5]
    Liu L, Sun X, Dong Y, et al. N-doped hierarchical porous hollow carbon spheres with multi-cavities for high performance Na-ion storage[J]. Journal of Power Sources,2021,506:230170. doi: 10.1016/j.jpowsour.2021.230170
    [6]
    Ding Y, Qi G, Cui Q, et al. High-Performance multifunctional structural supercapacitors based on in situ and ex situ activated-carbon-coated carbon fiber electrodes[J]. Energy & Fuels,2022,36(4):2171-2178.
    [7]
    Liu; L, Li; Y, Wang S, et al. High Sulfur-doped hollow carbon sphere with multicavity for high-performance Potassium-ion hybrid capacitors[J]. Journal of Colloid and Interface Science,2022,628:975-983. doi: 10.1016/j.jcis.2022.08.007
    [8]
    Wang G, Li M, Zhang J, et al. Flexible, stable and durable polydopamine@lead zirconate titanate/polyimide composite membranes for piezoelectric pressure sensors and limb motion monitoring[J]. Composites Part C: Open Access,2022,8:100292. doi: 10.1016/j.jcomc.2022.100292
    [9]
    Liu L, Sun Z, Lu Y, et al. d-Calcium pantothenate-derived porous carbon: carbonization mechanism and application in aqueous Zn-ion hybrid capacitors[J]. Journal of Materials Chemistry A,2023,11:14311-14319. doi: 10.1039/D3TA02498A
    [10]
    Liu L, Lu Y, Wang S, et al. B, N Stabilization effect on multicavity carbon microspheres for boosting durable and fast potassium-ion storage[J]. Journal of Colloid and Interface Science,2022,620(15):24-34.
    [11]
    Zhang P, Li Y, Wang G, et al. Zn-Ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability[J]. Adv Mater,2019,31(3):e1806005. doi: 10.1002/adma.201806005
    [12]
    Liu P, Fan X, Ouyang B, et al. A Zn ion hybrid capacitor with enhanced energy density for anode-free[J]. Journal of Power Sources,2022,518:230740. doi: 10.1016/j.jpowsour.2021.230740
    [13]
    Li H, Wu J, Wang L, et al. A zinc ion hybrid capacitor based on sharpened pencil-like hierarchically porous carbon derived from metal–organic framework[J]. Chemical Engineering Journal,2022,428:131071. doi: 10.1016/j.cej.2021.131071
    [14]
    Shang P, Liu M, Mei Y, et al. Urea-Mediated monoliths made of nitrogen-enriched mesoporous carbon nanosheets for high-performance aqueous zinc ion hybrid capacitors [J]. Small, 2022: e2108057.
    [15]
    Zhang Y, Wang Z, Li D, et al. Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage[J]. Journal of Materials Chemistry A,2020,8(43):22874-22885. doi: 10.1039/D0TA08577D
    [16]
    Yang L, He X, Wei Y, et al. Synthesis of N/P co-doped monolithic hierarchical porous carbon for zinc-ion hybrid capacitors with boosted energy density in ZnSO4/ZnI2 redox electrolyte[J]. Journal of Power Sources,2022,542:231743. doi: 10.1016/j.jpowsour.2022.231743
    [17]
    Li J, Yu L, Wang W, et al. Sulfur incorporation modulated absorption kinetics and electron transfer behavior for nitrogen rich porous carbon nanotubes endows superior aqueous Zinc ion storage capability[J]. Journal of Materials Chemistry A,2022,10(17):9355-9362. doi: 10.1039/D1TA10677E
    [18]
    Wu Z, Ye F, Liu Q, et al. Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage[J]. Advanced Energy Materials,2022,12:2200654. doi: 10.1002/aenm.202200654
    [19]
    Wang Y, Yang J, Liu S, et al. 3D graphene-like oxygen and sulfur-doped porous carbon nanosheets with multilevel ion channels for high-performance aqueous Zn-ion storage[J]. Carbon,2023,201:624-632. doi: 10.1016/j.carbon.2022.09.056
    [20]
    Tang H, Yao J, Zhu Y. Recent Developments and future prospects for Zinc-ion hybrid capacitors: a review[J]. Advanced Energy Materials,2021,11(14):2003994. doi: 10.1002/aenm.202003994
    [21]
    Leng C, Fedossedva Y V, Zhao Z, et al. Rational-design heteroatom-doped cathode and ion modulation layer modified Zn anode for ultrafast zinc-ion hybrid capacitors with simultaneous high power and energy densities[J]. Journal of Power Sources,2022,536:231484. doi: 10.1016/j.jpowsour.2022.231484
    [22]
    Huang Z, Chen A, Mo F, et al. Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors [J]. Advanced Energy Materials, 2020, 10(24).
    [23]
    Han L, Zhang X, Li J, et al. Enhanced energy storage of aqueous zinc-carbon hybrid supercapacitors via employing alkaline medium and B, N dual doped carbon cathode[J]. Journal of Colloid and Interface Science,2021,599:556-565. doi: 10.1016/j.jcis.2021.04.114
    [24]
    Liu M, Zhu F, Cao W, et al. Multifunctional sulfate-assistant synthesis of seaweed-like N, S-doped carbons as high-performance anodes for K-ion capacitors[J]. Journal of Materials Chemistry A,2022,10(17):9612-9620. doi: 10.1039/D2TA01431A
    [25]
    Zhou C, Wang D, Li A, et al. Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries[J]. Chemical Engineering Journal,2020,380:122457. doi: 10.1016/j.cej.2019.122457
    [26]
    Zhuang R, Dong Y, Li D, et al. Polyaniline-mediated coupling of Mn3O4 nanoparticles on activated carbon for high-performance asymmetric supercapacitors[J]. ACS Applied Materials & Inter Faces,2021,851:156871. doi: 10.1016/j.jallcom.2020.156871
    [27]
    Fan C, Dong Y, Liu Y, et al. Mesopore-dominated hollow carbon nanoparticles prepared by simple air oxidation of carbon black for high mass loading supercapacitors[J]. Carbon,2020,160:328-334. doi: 10.1016/j.carbon.2020.01.034
    [28]
    Zhou C, Chen X, Liu H, et al. Heteroatom-doped multilocular carbon nanospheres with high surface utilization and excellent rate capability as electrode material for supercapacitors[J]. Electrochimica Acta,2017,236:53-60. doi: 10.1016/j.electacta.2017.03.107
    [29]
    Qiu D, Gao A, Xie Z, et al. Homologous hierarchical porous hollow carbon spheres anode and bowls cathode enabling high-energy sodium-ion hybrid capacitors[J]. ACS Applied Materials & Inter faces,2018,10(51):44483-44493. doi: 10.1021/acsami.8b16442
    [30]
    Qiu D, Li M, Kang C, et al. Cucurbit [6] uril-derived sub-4 nm pores-dominated hierarchical porous carbon for supercapacitors: operating voltage expansion and pore size matching[J]. Small,2020,16(29):2002718.
    [31]
    Chen G, Jiang Z, Li A, et al. Cu-based MOF-derived porous carbon with highly efficient photothermal conversion performance for solar steam evaporation[J]. Journal of Materials Chemistry A,2021,9(31):16805-16813. doi: 10.1039/D1TA03695E
    [32]
    Chen Y, Shi L, Guo S, et al. A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries[J]. Journal of Materials Chemistry A,2017,5(37):19866-19874. doi: 10.1039/C7TA06453E
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(13) PDF Downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return