Turn off MathJax
Article Contents
FAN Ya-feng, YI Zong-lin, ZHOU Yi, XIE Li-jing, SUN Guo-hua, WANG Zhen-bing, Huang Xian-hong, SU Fang-yuan, CHEN Cheng-meng. Revealing the Correlation of High-frequency Performance of Supercapacitors with Doped Nitrogen Species. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60849-8
Citation: FAN Ya-feng, YI Zong-lin, ZHOU Yi, XIE Li-jing, SUN Guo-hua, WANG Zhen-bing, Huang Xian-hong, SU Fang-yuan, CHEN Cheng-meng. Revealing the Correlation of High-frequency Performance of Supercapacitors with Doped Nitrogen Species. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60849-8

Revealing the Correlation of High-frequency Performance of Supercapacitors with Doped Nitrogen Species

doi: 10.1016/S1872-5805(24)60849-8
Funds:  This work gratefully acknowledges the support of the National Key Research and Development (R&D) Program of China (2022YFF0609802, 2022YFF0609801), National Natural Science Foundation of China (22179139, 21975275), Fundamental Research Program of Shanxi Province (20210302123008), Key Research and Development (R&D) Projects of Shanxi Province (2021020660301013, 202102040201003, 202102070301018), Patent Transformation Special Plan Project of Shanxi Province (202303009)
More Information
  • Author Bio:

    范亚锋,博士研究生,E-mail:yafengfan@126.com

  • Corresponding author: SU Fang-yuan. E-mail: sufangyuan@sxicc.ac.cn; CHEN Cheng-Meng. E-mail: chencm@sxicc.ac.cn
  • Received Date: 2024-02-20
  • Accepted Date: 2024-04-01
  • Rev Recd Date: 2024-03-29
  • Available Online: 2024-04-07
  • Nitrogen doping has been widely used to enhance the performance of carbon electrodes in supercapacitors, particularly in terms of high-frequency response. However, the charge storage and ion response mechanisms of different nitrogen species at high frequencies is still unclear. In this study, we employ carbonized melamine foam with open surface structure as a simplified model material, enabling a comprehensive analysis of their impact on the ionic response behavior of high-frequency supercapacitors. Through a combination of experiments and first-principles calculations, we uncover that pyrrolic nitrogen, characterized by a higher adsorption energy, enhances the charge storage capacity of the electrode at high frequencies. On the other hand, graphitic nitrogen, with a lower adsorption energy, promotes rapid ion response. Furthermore, we propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications, offering a more universal approach for optimizing the performance of N-doped carbon materials. This research contributes to the advancement of high-frequency supercapacitor technology and provides guidance for the development of improved N-doped carbon materials.
  • loading
  • [1]
    Miller J R, Outlaw R A, Holloway B C. Graphene Double-Layer Capacitor with ac Line-Filtering Performance[J]. Science,2010,329(5999):1637-1639. doi: 10.1126/science.1194372
    [2]
    Han F, Qian O, Meng G, et al. Structurally integrated 3D carbon tube grid–based high-performance filter capacitor[J]. Science,2022,377(6609):1004-1007. doi: 10.1126/science.abh4380
    [3]
    Chi F, Hu Y, He W, et al. Graphene Ionogel Ultra-Fast Filter Supercapacitor with 4 V Workable Window and 150 °C Operable Temperature[J]. Small,2022,18:2200916. doi: 10.1002/smll.202200916
    [4]
    Zhang M, Dong K, Saeedi Garakani S, et al. Bridged Carbon Fabric Membrane with Boosted Performance in AC Line-Filtering Capacitors[J]. Advanced Science,2022,9:2105072. doi: 10.1002/advs.202105072
    [5]
    Li W, Azam S, Dai G, et al. Prussian blue based vertical graphene 3D structures for high frequency electrochemical capacitors[J]. Energy Storage Materials,2020,32:30-36. doi: 10.1016/j.ensm.2020.07.016
    [6]
    Islam N, Hoque M N F, Li W, et al. Vertically edge-oriented graphene on plasma pyrolyzed cellulose fibers and demonstration of kilohertz high-frequency filtering electrical double layer capacitors[J]. Carbon,2019,141:523-530. doi: 10.1016/j.carbon.2018.10.012
    [7]
    Miller J R, Outlaw R A. Vertically-Oriented Graphene Electric Double Layer Capacitor Designs[J]. Journal of The Electrochemical Society,2015,162(5):A5077-A5082. doi: 10.1149/2.0121505jes
    [8]
    Xu S, Wen Y, Chen Z, et al. Vertical Graphene Arrays as Electrodes for Ultra-High Energy Density AC Line-Filtering Capacitors[J]. Angewandte Chemie,2021,133(46):24710-24714. doi: 10.1002/ange.202111468
    [9]
    Li C, Li X, Liu G, et al. Microcrack Arrays in Dense Graphene Films for Fast-Ion-Diffusion Supercapacitors[J]. Small, 2023: 2301533.
    [10]
    Zhang Z, Liu M, Tian X, et al. Scalable fabrication of ultrathin free-standing graphene nanomesh films for flexible ultrafast electrochemical capacitors with AC line-filtering performance[J]. Nano Energy,2018,50:182-191. doi: 10.1016/j.nanoen.2018.05.030
    [11]
    Zhang M, Yu X, Ma H, et al. Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance[J]. Energy & Environmental Science,2018,11(3):559-565.
    [12]
    Yang C, Schellhammer K S, Ortmann F, et al. Coordination Polymer Framework Based On-Chip Micro-Supercapacitors with AC Line-Filtering Performance[J]. Angewandte Chemie International Edition,2017,56(14):3920-3924. doi: 10.1002/anie.201700679
    [13]
    Yu T, Wang Y, Jiang K, et al. Catechol-Coordinated Framework Film-based Micro-Supercapacitors with AC Line Filtering Performance[J]. Chemistry–A European Journal,2021,21:6340-6347.
    [14]
    Xue J, Gao Z, Xiao L, et al. An Ultrafast Supercapacitor Based on 3D Ordered Porous Graphene Film with AC Line Filtering Performance[J]. ACS Applied Energy Materials,2020,3(6):5182-5189. doi: 10.1021/acsaem.9b02458
    [15]
    Zhang C, Du H, Ma K, et al. Ultrahigh-Rate Supercapacitor Based on Carbon Nano-Onion/Graphene Hybrid Structure toward Compact Alternating Current Filter[J]. Advanced Energy Materials,2020,10:2002132. doi: 10.1002/aenm.202002132
    [16]
    Islam N, Wang S, Warzywoda J, et al. Fast supercapacitors based on vertically oriented MoS2 nanosheets on plasma pyrolyzed cellulose filter paper[J]. Journal of Power Sources,2018,400:277-283. doi: 10.1016/j.jpowsour.2018.08.049
    [17]
    Tang H, Tian Y, Wu Z, et al. AC Line Filter Electrochemical Capacitors: Materials, Morphology, and Configuration[J]. Energy & Enviromental Materials,2022,5:1060-1083.
    [18]
    Park J, Kim W. History and Perspectives on Ultrafast Supercapacitors for AC Line Filtering[J]. Advanced Energy Materials,2021,11:2003306. doi: 10.1002/aenm.202003306
    [19]
    Eftekhari A. The mechanism of ultrafast supercapacitors[J]. Journal of Materials Chemistry A,2018,6(7):2866-2876. doi: 10.1039/C7TA10013B
    [20]
    Sui Z Y, Meng Y N, Xiao P W, et al. Nitrogen-Doped Graphene Aerogels as Efficient Supercapacitor Electrodes and Gas Adsorbents[J]. ACS Applied Materials & Interfaces,2015,7(3):1431-1438.
    [21]
    Hulicova-Jurcakova D, Puziy A M, Poddubnaya O I, et al. Highly Stable Performance of Supercapacitors from Phosphorus-Enriched Carbons[J]. Journal of the American Chemical Society,2009,131(14):5026-5027.
    [22]
    Zhai Y, Dou Y, Zhao D, et al. Carbon Materials for Chemical Capacitive Energy Storage[J]. Advanced Materials,2011,23(42):4828-4850. doi: 10.1002/adma.201100984
    [23]
    Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources,2006,157(1):11-27. doi: 10.1016/j.jpowsour.2006.02.065
    [24]
    Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. doi: 10.1039/b813846j
    [25]
    Nguyen T H, Yang D, Zhu B, et al. Doping mechanism directed graphene applications for energy conversion and storage[J]. Journal of Materials Chemistry A,2021,9:7366-7395. doi: 10.1039/D0TA11939C
    [26]
    Zhou Q, Zhang M, Chen J, et al. Nitrogen-Doped Holey Graphene Film-Based Ultrafast Electrochemical Capacitors[J]. ACS Applied Materials & Interfaces,2016,8(32):20741-20747.
    [27]
    Chang Y, Han G, Fu D, et al. Paper-like N-doped graphene films prepared by hydroxylamine diffusion induced assembly and their ultrahigh-rate capacitive properties[J]. Electrochimica Acta,2014,115:461-470. doi: 10.1016/j.electacta.2013.10.203
    [28]
    Wu M, Tong S, Jiang L, et al. Nitrogen-doped porous carbon composite with three-dimensional conducting network for high rate supercapacitors[J]. Journal of Alloys and Compounds,2020,844:156217. doi: 10.1016/j.jallcom.2020.156217
    [29]
    Fan Y F, Yi Z L, Song G, et al. Self-standing graphitized hybrid Nanocarbon electrodes towards high-frequency supercapacitors[J]. Carbon,2021,185:630-640. doi: 10.1016/j.carbon.2021.09.059
    [30]
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B,1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169
    [31]
    Wang Y, Alsmeyer D C, McCreery R L. Raman spectroscopy of carbon materials: structural basis of observed spectra[J]. Chemistry of Materials,1990,2(5):557-563. doi: 10.1021/cm00011a018
    [32]
    Feng W, Qin M, Lv P, et al. A three-dimensional nanostructure of graphite intercalated by carbon nanotubes with high cross-plane thermal conductivity and bending strength[J]. Carbon,2014,77:1054-1064. doi: 10.1016/j.carbon.2014.06.021
    [33]
    Biscoe J, Warren B E. An X-Ray Study of Carbon Black[J]. Journal of Applied Physics,1942,13(6):364-371. doi: 10.1063/1.1714879
    [34]
    Cançado L G, Takai K, Enoki T, et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J]. Applied Physics Letters,2006,88(16):163106. doi: 10.1063/1.2196057
    [35]
    Feng L, Wang M, Chang Y, et al. Polymerization-Pyrolysis-Derived Hierarchical Nitrogen-Doped Porous Carbon for Energetic Capacitive Energy Storage[J]. ACS Applied Energy Materials,2023,6(13):7147-7155. doi: 10.1021/acsaem.3c00818
    [36]
    Chen C, Zhao M, Cai Y, et al. Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances[J]. Carbon,2021,179:458-468. doi: 10.1016/j.carbon.2021.04.062
    [37]
    Zhang Z, Zhang Y, Mu X, et al. The carbonization temperature effect on the electrochemical performance of nitrogen-doped carbon monoliths[J]. Electrochimica Acta,2017,242:100-106. doi: 10.1016/j.electacta.2017.05.016
    [38]
    Chi F, Li C, Zhou Q, et al. Graphene-Based Organic Electrochemical Capacitors for AC Line Filtering[J]. Advanced Energy Materials,2017,7(19):1700591. doi: 10.1002/aenm.201700591
    [39]
    Cai M, Outlaw R A, Quinlan R A, et al. Fast Response, Vertically Oriented Graphene Nanosheet Electric Double Layer Capacitors Synthesized from C2H2[J]. ACS Nano,2014,8(6):5873-5882. doi: 10.1021/nn5009319
    [40]
    Nathan-Walleser T, Lazar I M, Fabritius M, et al. 3D Micro-Extrusion of Graphene-based Active Electrodes: Towards High-Rate AC Line Filtering Performance Electrochemical Capacitors[J]. Advanced Functional Materials,2014,24(29):4706-4716. doi: 10.1002/adfm.201304151
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(19) PDF Downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return