Turn off MathJax
Article Contents
XU Xian-min, FENG Wen-cong, REN Jing-ke, LUO Wen. Research progress of graphdiyen in aqueous ion batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60852-8
Citation: XU Xian-min, FENG Wen-cong, REN Jing-ke, LUO Wen. Research progress of graphdiyen in aqueous ion batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60852-8

Research progress of graphdiyen in aqueous ion batteries

doi: 10.1016/S1872-5805(24)60852-8
Funds:  National Key Research and Development Program of China(2022YFB2404300) and National Innovation and Entrepreneurship Training Program for College Students(202310497015)
More Information
  • Author Bio:

    XU Xian-min. E-mail:322294@whut.edu.cn

  • Corresponding author: LUO Wen, Ph. D, Associate Professor. E-mail: luowen_1991@whut.edu.cn
  • Received Date: 2024-01-22
  • Accepted Date: 2024-04-08
  • Rev Recd Date: 2024-04-08
  • Available Online: 2024-04-12
  • Graphdiyen (GDY), as a novel carbon material, for its special carbon hybrid arrangement, unique chemical and electronic structure and infinitely distributed natural pores, has promising application prospects in electrochemical energy storage fields. Emerging aqueous ion batteries have advantages in low cost and high safety. Nevertheless, the development of high-performance electrode materials, the design of new membrane system and the strategy of stablizing the interface remain the main challenges in aqueous ion batteries. With its unique porous structure and excellent electrochemical properties, graphdiyne can improve ion transport, interface deposition behavior and electrolyte instability in the aspects of anode protection, cathode cladding, membrane design and stablizing pH of the interface. Especially, the bottom-up molecular structure design strategy makes graphdiyen easy to modify and dope and the properties of graphdiyen’s analogues by this strategy are improved, and then their applications in aqueous ion batteries are expanded. Here, we systematically summarize the structure and properties of graphdiyne and their synthesis methods, and espesically summarizes the research of graphdiyne in aqueous ion batteries. Besides, a comprehensive evaluation was conducted on the existing problems and challenges of applications of graphdiyen in aqueous ion batteries, and the development trend of graphdiyen in aqueous ion batteries in the future was prospected.
  • loading
  • [1]
    Li G X, Li Y L, Liu H B, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications,2010,46(19):3256-3258. doi: 10.1039/b922733d
    [2]
    Baughman R H, Eckhardt H, Kertesz M. Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms[J]. The Journal of Chemical Physics,1987,87(11):6687-6699. doi: 10.1063/1.453405
    [3]
    Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes—the route toward applications[J]. Science,2002,297(5582):787-792. doi: 10.1126/science.1060928
    [4]
    Coluci V R, Galvão D S, Baughman R H. Theoretical investigation of electromechanical effects for graphyne carbon nanotubes[J]. The Journal of Chemical Physics,2004,121(7):3228-3237. doi: 10.1063/1.1772756
    [5]
    Fang Y, Liu Y X, Qi L, et al. 2D graphdiyne: An emerging carbon material[J]. Chemical Society Reviews,2022,51(7):2681-2709. doi: 10.1039/D1CS00592H
    [6]
    Huang C S, Li Y J, Wang N, et al. Progress in research into 2D graphdiyne-based materials[J]. Chemical Reviews,2018,118(16):7744-7803. doi: 10.1021/acs.chemrev.8b00288
    [7]
    Jia Z Y, Li Y J, Zuo Z C, et al. Synthesis and properties of 2D carbon-graphdiyne[J]. Accounts of Chemical Research,2017,50(10):2470-2478. doi: 10.1021/acs.accounts.7b00205
    [8]
    Li H, Lim J H, Lv Y P, et al. Graphynes and graphdiynes for energy storage and catalytic utilization: Theoretical insights into recent advances[J]. Chemical Reviews,2023,123(8):4795-4854. doi: 10.1021/acs.chemrev.2c00729
    [9]
    Li J, Gao X, Zhu L, et al. Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications[J]. Energy & Environmental Science,2020,13(5):1326-1346.
    [10]
    Qiu H, Xue M M, Shen C, et al. Graphynes for water desalination and gas separation[J]. Advanced Materials,2019,31(42):16.
    [11]
    Wang N, He J J, Wang K, et al. Graphdiyne-based materials: Preparation and application for electrochemical energy storage[J]. Advanced Materials,2019,31(42):22.
    [12]
    Zheng X C, Chen S, Li J Z, et al. Two-dimensional carbon graphdiyne: Advances in fundamental and application research[J]. Acs Nano,2023,17(15):14309-14346. doi: 10.1021/acsnano.3c03849
    [13]
    张婷, 王宇晶, 于灵敏, 等. 石墨炔: 一种新型二维炭材料的合成、改性与应用[J]. 新型炭材料,2022,37(6):1089-1113. doi: 10.1016/S1872-5805(22)60653-X

    Zhang T, Wang YJ, Yu LM, et al. Graphdiyne: Synthesis, modification and application of a two-dimensional carbonaceous material[J]. New Carbon Materials,2022,37(6):1089-1113. doi: 10.1016/S1872-5805(22)60653-X
    [14]
    Liu G, Liu S B, Xu B, et al. Multiple dirac points and hydrogenation-induced magnetism of germanene layer on Al (111) surface[J]. Journal of Physical Chemistry Letters,2015,6(24):4936-4942. doi: 10.1021/acs.jpclett.5b02413
    [15]
    Wang J Y, Deng S B, Liu Z F, et al. The rare two-dimensional materials with dirac cones[J]. National Science Review,2015,2(1):22-39. doi: 10.1093/nsr/nwu080
    [16]
    Cui H J, Sheng X L, Yan Q B, et al. Strain-induced dirac cone-like electronic structures and semiconductor-semimetal transition in graphdiyne[J]. Physical Chemistry Chemical Physics,2013,15(21):8179-8185. doi: 10.1039/c3cp44457k
    [17]
    Cao J M, Huang Z Q, Macam G, et al. Prediction of massless dirac fermions in a carbon nitride covalent network[J]. Applied Physics Letters,2021,118(13):7.
    [18]
    Liang Y L and Yao Y. Designing modern aqueous batteries[J]. Nature Reviews Materials,2023,8(2):109-122.
    [19]
    Liu J L, Xu C H, Chen Z, et al. Progress in aqueous rechargeable batteries[J]. Green Energy & Environment,2018,3(1):20-41.
    [20]
    Ju Z N, Zhao Q, Chao D L, et al. Energetic aqueous batteries[J]. Advanced Energy Materials,2022,12(27):26.
    [21]
    Li M, Wang X P, Meng J S, et al. Comprehensive understandings of hydrogen bond chemistry in aqueous batteries[J]. Advanced Materials,2024,36(3):27.
    [22]
    Huang J H, Guo Z W, Ma Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods,2019,3(1):20.
    [23]
    Chao D L, Zhou W H, Xie F X, et al. Roadmap for advanced aqueous batteries: From design of materials to applications[J]. Science Advances,2020,6(21):19.
    [24]
    Pan Z H, Liu X M, Yang J, et al. Aqueous rechargeable multivalent metal-ion batteries: Advances and challenges[J]. Advanced Energy Materials,2021,11(24):24.
    [25]
    Shang Y and Kundu D. A path forward for the translational development of aqueous zinc-ion batteries[J]. Joule,2023,7(2):244-250. doi: 10.1016/j.joule.2023.01.011
    [26]
    Deng M, Wang L Q, Vaghefinazari B, et al. High-energy and durable aqueous magnesium batteries: Recent advances and perspectives[J]. Energy Storage Materials,2021,43:238-247. doi: 10.1016/j.ensm.2021.09.008
    [27]
    Guo Z Q, Zhao S Q, Li T X, et al. Recent advances in rechargeable magnesium-based batteries for high-efficiency energy storage[J]. Advanced Energy Materials,2020,10(21):17.
    [28]
    Jia B E, Thang A Q, Yan C S, et al. Rechargeable aqueous aluminum-ion battery: Progress and outlook[J]. Small,2022,18(43):19.
    [29]
    Li C, Hou C-C, Chen L, et al. Rechargeable Al-ion batteries[J]. EnergyChem,2021,3(2):100049. doi: 10.1016/j.enchem.2020.100049
    [30]
    Song M, Tan H, Chao D L, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials,2018,28(41):27.
    [31]
    武丽莎, 张明慧, 徐文, 等. 炭材料在柔性锌离子电池中的研究进展[J]. 新型炭材料,2022,37(5):827-851. doi: 10.1016/S1872-5805(22)60628-0

    Wu LS, Zhang MH, Xu W, et al. Recent advances in carbon materials for flexible zinc ion batteries[J]. New Carbon Materials,2022,37(5):827-851. doi: 10.1016/S1872-5805(22)60628-0
    [32]
    贡昀, 薛裕华. 纳米炭材料应用于稳定锌离子电池中锌负极[J]. 新型炭材料,2023,38(3):438-454. doi: 10.1016/S1872-5805(23)60740-1

    Gong Y and Xue YH. Carbon nanomaterials for stabilizing zinc anodes in zinc-ion batteries[J]. New Carbon Materials,2023,38(3):438-454. doi: 10.1016/S1872-5805(23)60740-1
    [33]
    Li Y, Zhao X, Gao Y F, et al. Design strategies for rechargeable aqueous metal-ion batteries [J]. Science China-Chemistry, 2023, : 26.
    [34]
    Gao L, Yang Z, Li X D, et al. Post-modified strategies of graphdiyne for electrochemical applications[J]. Chemistry-an Asian Journal,2021,16(16):2185-2194. doi: 10.1002/asia.202100579
    [35]
    Ivanovskii A L. Graphynes and graphdyines[J]. Progress in Solid State Chemistry,2013,41(1):1-19.
    [36]
    Hu Y, Wu C, Pan Q, et al. Synthesis of γ-graphyne using dynamic covalent chemistry[J]. Nature Synthesis,2022,1(6):449-454. doi: 10.1038/s44160-022-00068-7
    [37]
    Gao X, Liu H B, Wang D, et al. Graphdiyne: Synthesis, properties, and applications[J]. Chemical Society Reviews,2019,48(3):908-936. doi: 10.1039/C8CS00773J
    [38]
    Yi Y Y, Li J Q, Zhao W, et al. Temperature-mediated engineering of graphdiyne framework enabling high-performance potassium storage[J]. Advanced Functional Materials,2020,30(31):8.
    [39]
    Long M Q, Tang L, Wang D, et al. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions[J]. ACS Nano,2011,5(4):2593-2600. doi: 10.1021/nn102472s
    [40]
    Luo G F, Zheng Q Y, Me W N, et al. Structural, electronic, and optical properties of bulk graphdiyne[J]. Journal of Physical Chemistry C,2013,117(25):13072-13079. doi: 10.1021/jp402218k
    [41]
    Lin L H, Pan H Z, Chen Y H, et al. Identifying the stacking style, intrinsic bandgap and magnetism of pristine graphdyine[J]. Carbon,2019,143:8-13. doi: 10.1016/j.carbon.2018.10.001
    [42]
    Feng W C, Pan C Q, Wang H, et al. Molecular carbon skeleton with self-regulating ion-transport channels for long-life potassium ion batteries[J]. Energy Storage Materials,2023,63:12.
    [43]
    Zhang S L, Liu H B, Huang C S, et al. Bulk graphdiyne powder applied for highly efficient lithium storage[J]. Chemical Communications,2015,51(10):1834-1837. doi: 10.1039/C4CC08706B
    [44]
    Zhang S L, He J J, Zheng J, et al. Porous graphdiyne applied for sodium ion storage[J]. Journal of Materials Chemistry A,2017,5(5):2045-2051. doi: 10.1039/C6TA09822C
    [45]
    Huang C S, Zhang S L, Liu H B, et al. Graphdiyne for high capacity and long-life lithium storage[J]. Nano Energy,2015,11:481-489. doi: 10.1016/j.nanoen.2014.11.036
    [46]
    van Miert G, Juričić V, Morais Smith C. Tight-binding theory of spin-orbit coupling in graphynes[J]. Physical Review B,2014,90(19):195414. doi: 10.1103/PhysRevB.90.195414
    [47]
    Li Y J, Xu L, Liu H B, et al. Graphdiyne and graphyne: From theoretical predictions to practical construction[J]. Chemical Society Reviews,2014,43(8):2572-2586. doi: 10.1039/c3cs60388a
    [48]
    郑勇平, 冯倩, 汤怒江, 等. 石墨炔制备与发光性能[J]. 新型炭材料,2018,33(6):516-521. doi: 10.1016/S1872-5805(18)60354-3

    Zheng YP, Feng Q, Tang NJ, et al. Synthesis and photoluminescence of graphdiyne[J]. New Carbon Materials,2018,33(6):516-521. doi: 10.1016/S1872-5805(18)60354-3
    [49]
    Wu L M, Dong Y Z, Zhao J L, et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes[J]. Advanced Materials,2019,31(14):10.
    [50]
    Guo J, Shi R C, Wang R, et al. Graphdiyne-polymer nanocomposite as a broadband and robust saturable absorber for ultrafast photonics[J]. Laser & Photonics Reviews,2020,14(4):10.
    [51]
    He J, Ma S Y, Zhou P, et al. Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+U calculations[J]. The Journal of Physical Chemistry C,2012,116(50):26313-26321. doi: 10.1021/jp307408u
    [52]
    Kang B T, Liu H G, Lee J Y. Oxygen adsorption on single layer graphyne: A DFT study[J]. Physical Chemistry Chemical Physics,2014,16(3):974-980. doi: 10.1039/C3CP53237B
    [53]
    Zhang M J, Wang X X, Sun H J, et al. Enhanced paramagnetism of mesoscopic graphdiyne by doping with nitrogen[J]. Scientific Reports,2017,7:10. doi: 10.1038/s41598-017-00036-8
    [54]
    Zhang M J, Sun H J, Wang X X, et al. Room-temperature ferromagnetism in sulfur-doped graphdiyne semiconductors[J]. Journal of Physical Chemistry C,2019,123(8):5010-5016. doi: 10.1021/acs.jpcc.8b10507
    [55]
    Zhang Y Y, Pei Q X, Wang C M. Mechanical properties of graphynes under tension: A molecular dynamics study[J]. Applied Physics Letters,2012,101(8):4.
    [56]
    Cranford S W, Brommer D B, Buehler M J. Extended graphynes: Simple scaling laws for stiffness, strength and fracture[J]. Nanoscale,2012,4(24):7797-7809. doi: 10.1039/c2nr31644g
    [57]
    Xiao K L, Jin W Y, Liu H B, et al. Low-density multilayer graphdiyne film with excellent energy dissipation capability under micro-ballistic impact[J]. Advanced Functional Materials,2023,33(15):9.
    [58]
    Zhou J Y, Gao X, Liu R, et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction[J]. Journal of the American Chemical Society,2015,137(24):7596-7599. doi: 10.1021/jacs.5b04057
    [59]
    Matsuoka R, Sakamoto R, Hoshiko K, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface[J]. Journal of the American Chemical Society,2017,139(8):3145-3152. doi: 10.1021/jacs.6b12776
    [60]
    Wang D B, Zhang L, Chen S Q, et al. Preparation of a large amount of ultrathin graphdiyne[J]. Chemistry-a European Journal,2022,28(34):5.
    [61]
    Zuo Z C, Shang H, Chen Y H, et al. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode[J]. Chemical Communications,2017,53(57):8074-8077. doi: 10.1039/C7CC03200E
    [62]
    Gao X, Zhu Y H, Yi D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der waals epitaxy[J]. Science Advances,2018,4(7):7.
    [63]
    Zhang S L, Du H P, He J J, et al. Nitrogen-doped graphdiyne applied for lithium-ion storage[J]. ACS Applied Materials & Interfaces,2016,8(13):8467-8473.
    [64]
    Wang N, He J J, Tu Z Y, et al. Synthesis of chlorine-substituted graphdiyne and applications for lithium-ion storage[J]. Angewandte Chemie-International Edition,2017,56(36):10740-10745. doi: 10.1002/anie.201704779
    [65]
    He J J, Wang N, Yang Z, et al. Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance[J]. Energy & Environmental Science,2018,11(10):2893-2903.
    [66]
    Wang N, Li X D, Tu Z Y, et al. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage[J]. Angewandte Chemie-International Edition,2018,57(15):3968-3973. doi: 10.1002/anie.201800453
    [67]
    Ren X, Li X D, Yang Z, et al. Tailoring acetylenic bonds in graphdiyne for advanced lithium storage[J]. ACS Sustainable Chemistry & Engineering,2020,8(7):2614-2621.
    [68]
    He J J, Wang N, Cui Z L, et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries[J]. Nature Communications,2017,8:11. doi: 10.1038/s41467-017-00022-8
    [69]
    Zheng X L, Gao X, Vilá R A, et al. Hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis of metastable nanomaterials[J]. Nature Nanotechnology,2023,18(2):153-+. doi: 10.1038/s41565-022-01272-4
    [70]
    Mashhadzadeh A H, Vahedi A M, Ardjmand M, et al. Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: A density functional theory study[J]. Superlattices and Microstructures,2016,100:1094-1102. doi: 10.1016/j.spmi.2016.10.079
    [71]
    Kim S, Ruiz Puigdollers A, Gamallo P, et al. Functionalization of γ-graphyne by transition metal adatoms[J]. Carbon,2017,120:63-70. doi: 10.1016/j.carbon.2017.05.028
    [72]
    Alaei S, Jalili S, Erkoc S. Study of the influence of transition metal atoms on electronic and magnetic properties of graphyne nanotubes using density functional theory[J]. Fullerenes, Nanotubes and Carbon Nanostructures,2015,23(6):494-499. doi: 10.1080/1536383X.2013.863767
    [73]
    Li C, Li J, Wu F, et al. High capacity hydrogen storage in ca decorated graphyne: A first-principles study[J]. The Journal of Physical Chemistry C,2011,115(46):23221-23225. doi: 10.1021/jp208423y
    [74]
    Hwang H J, Kwon Y, Lee H. Thermodynamically stable calcium-decorated graphyne as a hydrogen storage medium[J]. The Journal of Physical Chemistry C,2012,116(38):20220-20224. doi: 10.1021/jp306222v
    [75]
    Guo Y, Lan X, Cao J, et al. A comparative study of the reversible hydrogen storage behavior in several metal decorated graphyne[J]. International Journal of Hydrogen Energy,2013,38(10):3987-3993. doi: 10.1016/j.ijhydene.2013.01.064
    [76]
    Xu B, Lei X L, Liu G, et al. Li-decorated graphyne as high-capacity hydrogen storage media: First-principles plane wave calculations[J]. International Journal of Hydrogen Energy,2014,39(30):17104-17111. doi: 10.1016/j.ijhydene.2014.07.182
    [77]
    Gao Y, Xue Y R, Liu T F, et al. Bimetallic mixed clusters highly loaded on porous 2D graphdiyne for hydrogen energy conversion[J]. Advanced Science,2021,8(21):11.
    [78]
    Du W C, Ang E H X, Yang Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries[J]. Energy & Environmental Science,2020,13(10):3330-3360.
    [79]
    Yan H B, Li S M, Zhong J Y, et al. An electrochemical perspective of aqueous zinc metal anode[J]. Nano-Micro Letters,2024,16(1):39. doi: 10.1007/s40820-023-01253-9
    [80]
    Guo X X and He G J. Opportunities and challenges of zinc anodes in rechargeable aqueous batteries[J]. Journal of Materials Chemistry A,2023,11(23):11987-12001. doi: 10.1039/D3TA01904G
    [81]
    Hu L, Xiao P, Xue L, et al. The rising zinc anodes for high-energy aqueous batteries[J]. EnergyChem,2021,3(2):100052. doi: 10.1016/j.enchem.2021.100052
    [82]
    Liu X, Wang K, Liu Y, et al. Constructing an ion-oriented channel on a zinc electrode through surface engineering [J]. Carbon Energy, 2023, : 13.
    [83]
    Zuo Z C, He F, Wang F, et al. Spontaneously splitting copper nanowires into quantum dots on graphdiyne for suppressing lithium dendrites[J]. Advanced Materials,2020,32(49):10.
    [84]
    Wang L N, Luo G F. Atomistic mechanism and long-term stability of using chlorinated graphdiyne film to reduce lithium dendrites in rechargeable lithium metal batteries[J]. Nano Letters,2021,21(17):7284-7290. doi: 10.1021/acs.nanolett.1c02429
    [85]
    Li G, Sun L, Zhang S, et al. Developing cathode materials for aqueous zinc ion batteries: Challenges and practical prospects[J]. Advanced Functional Materials,2024,34(5):2301291. doi: 10.1002/adfm.202301291
    [86]
    Zhong W, Zhang J, Li Z, et al. Issues and strategies of cathode materials for mild aqueous static zinc-ion batteries[J]. Green Chemical Engineering,2023,4(3):264-284. doi: 10.1016/j.gce.2023.01.001
    [87]
    Zhang N, Wang J C, Guo Y F, et al. Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries[J]. Coordination Chemistry Reviews,2023,479:55.
    [88]
    Li J W, Luo N J, Kang L Q, et al. Hydrogen-bond reinforced superstructural manganese oxide as the cathode for ultra-stable aqueous zinc ion batteries[J]. Advanced Energy Materials,2022,12(44):12.
    [89]
    Xu Y H, Zhang G N, Liu J Q, et al. Recent advances on challenges and strategies of manganese dioxide cathodes for aqueous zinc-ion batteries[J]. Energy & Environmental Materials,2023,6(6):24.
    [90]
    Chen J, Chen M, Ma H, et al. Advances and perspectives on separators of aqueous zinc ion batteries[J]. Energy Reviews,2022,1(1):100005. doi: 10.1016/j.enrev.2022.100005
    [91]
    Du H, Yi Z H, Li H L, et al. Separator design strategies to advance rechargeable aqueous zinc ion batteries [J]. Chemistry-a European Journal, 2024, : 20.
    [92]
    Li X Y, Wang L, Fu Y H, et al. Optimization strategies toward advanced aqueous zinc-ion batteries: From facing key issues to viable solutions[J]. Nano Energy,2023,116:39.
    [93]
    Zong Y, He H, Wang Y, et al. Functionalized separator strategies toward advanced aqueous zinc-ion batteries[J]. Advanced Energy Materials,2023,13(20):2300403. doi: 10.1002/aenm.202300403
    [94]
    Lee B, Seo H R, Lee H R, et al. Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries[J]. Chemsuschem,2016,9(20):2948-2956. doi: 10.1002/cssc.201600702
    [95]
    Li Q, Chen A, Wang D, et al. “Soft shorts” hidden in zinc metal anode research[J]. Joule,2022,6(2):273-279. doi: 10.1016/j.joule.2021.12.009
    [96]
    Zhang W, Dai Y, Chen R, et al. Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive[J]. Angewandte Chemie International Edition,2023,62(5):e202212695. doi: 10.1002/anie.202212695
    [97]
    Ding L, Wang L, Gao J, et al. Facile Zn2+ desolvation enabled by local coordination engineering for long-cycling aqueous zinc-ion batteries[J]. Advanced Functional Materials,2023,33(32):2301648. doi: 10.1002/adfm.202301648
    [98]
    Luan X Y, Qi L, Zheng Z Q, et al. Step by step induced growth of zinc-metal interface on graphdiyne for aqueous zinc-ion batteries[J]. Angewandte Chemie-International Edition,2023,62(8):7.
    [99]
    Wang F, Xiong Z, Jin W, et al. Graphdiyne oxide for aqueous zinc ion full battery with ultra-long cycling stability[J]. Nano Today,2022,44:101463. doi: 10.1016/j.nantod.2022.101463
    [100]
    Yang Q, Guo Y, Yan B X, et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes[J]. Advanced Materials,2020,32(25):9.
    [101]
    Sun Q H, He J J, Li X D, et al. In-situ synthesis of graphdiyne on Mn3O4 nanoparticles for efficient Zn ions diffusion and storage[J]. Chemical Engineering Journal,2022,432:7.
    [102]
    Li J F, Chen Y H, Wang F H, et al. Graphdiyne hybrid nanowall arrays for high-capacity aqueous rechargeable zinc ion battery[J]. Chemical Research in Chinese Universities,2021,37(6):1301-1308. doi: 10.1007/s40242-021-1333-x
    [103]
    Wang F H, Jin W Y, Xiong Z C, et al. In situ grown MnO2/graphdiyne oxide hybrid 3D nanoflowers for high-performance aqueous zinc-ion batteries[J]. Materials Chemistry Frontiers,2021,5(14):5400-5409. doi: 10.1039/D1QM00548K
    [104]
    Li J, Chen Y, Guo J, et al. Graphdiyne oxide-based high-performance rechargeable aqueous Zn-MnO2 battery[J]. Advanced Functional Materials,2020,30(42):2004115. doi: 10.1002/adfm.202004115
    [105]
    Yang Q, Li L, Hussain T, et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries[J]. Angewandte Chemie-International Edition,2022,61(6):9.
    [106]
    Li Z Y, Häcker J, Fichtner M, et al. Cathode materials and chemistries for magnesium batteries: Challenges and opportunities[J]. Advanced Energy Materials,2023,13(27):29.
    [107]
    Liu Y Y, He G J, Jiang H, et al. Cathode design for aqueous rechargeable multivalent ion batteries: Challenges and opportunities[J]. Advanced Functional Materials,2021,31(13):35.
    [108]
    Yang R, Yao W J, Tang B, et al. Development and challenges of electrode materials for rechargeable Mg batteries[J]. Energy Storage Materials,2021,42:687-704. doi: 10.1016/j.ensm.2021.08.019
    [109]
    Zhuo S F, Huang G, Sougrat R, et al. Hierarchical nanocapsules of Cu-doped MoS2@H-substituted graphdiyne for magnesium storage[J]. ACS Nano,2022,16(3):3955-3964. doi: 10.1021/acsnano.1c09405
    [110]
    Fu X L, He F, Gao J C, et al. Directly growing graphdiyne nanoarray cathode to integrate an intelligent solid Mg-moisture battery[J]. Journal of the American Chemical Society,2023,145(5):2759-2764. doi: 10.1021/jacs.2c11409
    [111]
    Hu E, Jia BE, Zhu Q, et al. Engineering high voltage aqueous aluminum-ion batteries[J]. Small,2024,n/a(n/a):2309252.
    [112]
    Xu X L, Hui K S, Hui K N, et al. Engineering strategies for low-cost and high-power density aluminum-ion batteries[J]. Chemical Engineering Journal,2021,418:19.
    [113]
    Pan W D, Zhao Y, Mao J J, et al. High-energy SWCNT cathode for aqueous Al-ion battery boosted by multi-ion intercalation chemistry[J]. Advanced Energy Materials,2021,11(39):12.
    [114]
    Debnath S, Phan C, Searles D J, et al. Graphdiyne and hydrogen-substituted graphdiyne as potential cathode materials for high-capacity aluminum-ion batteries[J]. ACS Applied Energy Materials,2020,3(8):7404-7415. doi: 10.1021/acsaem.0c00805
    [115]
    Mishra S B, V G A, Ramaprabhu S, et al. Graphdiyne—a two-dimensional cathode for aluminum dual-ion batteries with high specific capacity and diffusivity[J]. ACS Applied Energy Materials,2021,4(8):7786-7799. doi: 10.1021/acsaem.1c01164
    [116]
    Xu C, Luo X. First-principles investigation of graphenylene as a long-life cathode material in aluminum ion batteries[J]. ACS Applied Energy Materials,2022,5(4):4970-4975. doi: 10.1021/acsaem.2c00339
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article Views(50) PDF Downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return