Turn off MathJax
Article Contents
JIANG Qiu-tong, WANG Guo-qing, LI Yi, HUANG Hong-wei, LI Qian, YANG Jian. Plasma-assisted preparation of NiCoAl-LDHs with enhanced interlayer space on carbon cloth for electrochemical deionization. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60854-1
Citation: JIANG Qiu-tong, WANG Guo-qing, LI Yi, HUANG Hong-wei, LI Qian, YANG Jian. Plasma-assisted preparation of NiCoAl-LDHs with enhanced interlayer space on carbon cloth for electrochemical deionization. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60854-1

Plasma-assisted preparation of NiCoAl-LDHs with enhanced interlayer space on carbon cloth for electrochemical deionization

doi: 10.1016/S1872-5805(24)60854-1
Funds:  National Natural Science Foundation of China (22309081), Natural Science Foundation of Jiangsu Province (BK20230320), Natural Science Research in Colleges and universities of Jiangsu Province (22KJB430005), Open Project Fund from Guangdong Provincial Key Laboratory of Materials and Technology for Energy Conversion, and Guangdong Technion-Israel Institute of Technology (MATEC2023KF006).
More Information
  • Author Bio:

    JIANG Qiu-tong, postgraduate student. E-mail: jqt0819@163.com

  • Corresponding author: LI Qian, Ph. D, Associate Professor. E-mail: liqian1004@163.com; YANG Jian. Ph. D, Professor. E-mail: yangjian1976@163.com
  • Received Date: 2024-03-14
  • Accepted Date: 2024-04-11
  • Rev Recd Date: 2024-04-10
  • Available Online: 2024-04-16
  • Capacitive deionization technology has been considered as an emerging desalination technique in recent years, especially for its economic and energy-saving characteristics within the brackish water range. However, there are currently few studies on chloride ion removal electrodes, and the slow desalination kinetics limits their development. In this work, Ar-NiCoAl-LDHs@ACC materials with enhanced interlayer space were prepared by in-situ growth of NiCoAl-LDHs nanosheets arrays on acid-treated carbon cloth and subsequent argon plasma treatment. The carbon cloth suppresses the agglomeration of NiCoAl-LDHs nanosheets and improves the electrical conductivity, while the plasma treatment further expands the interlayer space of NiCoAl-LDHs and enhances the hydrophilicity. This provides a rapid diffusion channel and more interlayer active sites for chloride ions, achieving high desalination kinetics. A hybrid capacitive deionization (HCDI) cell was assembled using the Ar-NiCoAl-LDHs@ACC as chloride ion removal electrode and activated carbon as sodium ion removal electrode. This HCDI cell achieves a high desalination capacity of 93.26 mg g−1 at 1.2 V in 1000 mg L−1 NaCl solution, remarkable desalination rate of 0.27 mg g−1 s−1, and good charge efficiency of 0.97. In 300 mg L−1 NaCl solution at 0.8 V, the capacity retention rate remains above 85% after 100 cycles. This work provides new ideas for the controllable preparation of two-dimensional metal hydroxide materials with large interlayer space and the design of high-performance electrochemical chlorine ion removal electrodes.
  • loading
  • [1]
    Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials,2016,1(5):16018. doi: 10.1038/natrevmats.2016.18
    [2]
    Zeng Z H, Yan L L, Li G H, et al. Development of biochar electrode materials for capacitive deionization: Preparation, performance, regeneration and other challenges[J]. New Carbon Materials,2023,38(5):837-860. doi: 10.1016/S1872-5805(23)60779-6
    [3]
    Suss M E, Porada S, Sun X, et al. Water desalination via capacitive deionization: what is it and what can we expect from it?[J]. Energy & Environmental Science,2015,8(8):2296-2319.
    [4]
    Wang S Y, Li Z L, Wang G, et al. Freestanding Ti3C2Tx MXene/Prussian blue analogues films with superior ion uptake for efficient capacitive deionization by a dual pseudocapacitance effect[J]. ACS Nano,2022,16(1):1239-1249. doi: 10.1021/acsnano.1c09036
    [5]
    Gamaethiralalage J G, Singh K, Sahin S, et al. Recent advances in ion selectivity with capacitive deionization[J]. Energy & Environmental Science,2021,14(3):1095-1120.
    [6]
    Inagaki M, Huang Z. Carbon materials for water desalination by capacitive deionization[J]. New Carbon Materials,2023,38(3):405-431. doi: 10.1016/S1872-5805(23)60736-X
    [7]
    Zornitta R L, Srimuk P, Lee J, et al. Charge and potential balancing for optimized capacitive deionization using lignin-derived, low-cost activated carbon electrodes[J]. Chemistry and sustainable chemistry,2018,11(13):2101-2113. doi: 10.1002/cssc.201800689
    [8]
    Kumar R, Sen Gupta S, Katiyar S, et al. Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization[J]. Carbon,2016,99:375-383. doi: 10.1016/j.carbon.2015.12.004
    [9]
    Wang L, Wang M, Huang Z H, et al. Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes[J]. Journal of Materials Chemistry,2011,21(45):18295-18299. doi: 10.1039/c1jm13105b
    [10]
    Li Z, Song B, Wu Z K, et al. 3D porous graphene with ultrahigh surface area for microscale capacitive deionization[J]. Nano Energy,2015,11:711-718. doi: 10.1016/j.nanoen.2014.11.018
    [11]
    Wang H, Edano L, Valentino L, et al. Capacitive deionization using carbon derived from an array of zeolitic-imidazolate frameworks[J]. Nano Energy,2020,77:105304. doi: 10.1016/j.nanoen.2020.105304
    [12]
    Li Q, Zheng Y, Xiao D J, et al. Faradaic electrodes open a new era for capacitive deionization[J]. Advanced Science,2020,7(22):2002213. doi: 10.1002/advs.202002213
    [13]
    Sun K G, Tebyetekerwa M, Wang C, et al. Electrocapacitive deionization: mechanisms, electrodes and cell designs[J]. Advanced Functional Materials,2023,33(18):2213578. doi: 10.1002/adfm.202213578
    [14]
    Chang J J, Li Y P, Duan F, et al. Selective removal of chloride ions by bismuth electrode in capacitive deionization[J]. Separation and Purification Technology,2020,240:116600. doi: 10.1016/j.seppur.2020.116600
    [15]
    Hao Z W, Sun X Q, Cheng J B, et al. Recent progress and challenges in faradic capacitive desalination: From mechanism to performance[J]. Small,2023,19(33):2300253. doi: 10.1002/smll.202300253
    [16]
    Pan Q F, Zheng F H, Deng D F, et al. Interlayer spacing regulation of NiCo-LDH nanosheets with ultrahigh specific capacity for battery-type supercapacitors[J]. ACS Applied Materials & Interfaces,2021,13(47):56692-56703.
    [17]
    Wang Y, Pan Q F, Qiao Y X, et al. Layered metal oxide nanosheets with enhanced interlayer space for electrochemical deionization[J]. Advanced Materials,2023,35(15):2210871.
    [18]
    Zhang Z H, Li H B. Promoting the uptake of chloride ions by ZnCo–Cl layered double hydroxide electrodes for enhanced capacitive deionization[J]. Environmental Science:Nano,2021,8(7):1886-1895. doi: 10.1039/D1EN00350J
    [19]
    Zhang D D, Cao J, Zhang X Y, et al. NiMn layered double hydroxide nanosheets in-situ anchored on Ti3C2 MXene via chemical bonds for auperior supercapacitors[J]. ACS Applied Energy Materials,2020,3(6):5949-5964. doi: 10.1021/acsaem.0c00863
    [20]
    Li C Y, Zhang D D, Cao J, et al. Ti3C2 MXene-encapsulated NiFe-LDH hybrid anode for high-performance lithium-ion batteries and capacitors[J]. ACS Applied Energy Materials,2021,4(8):7821-7828. doi: 10.1021/acsaem.1c01171
    [21]
    Wei D, Cao Y Y, Yan L J, et al. Enhanced pseudo-capacitance process in nanoarchitectural layered double hydroxide nanoarrays hollow nanocages for improved capacitive deionization performance[J]. ACS applied materials & interfaces,2023,15(20):24427-24436.
    [22]
    Xi W, Li H B. Vertically-aligned growth of CuAl-layered double oxides on reduced graphene oxide for hybrid capacitive deionization with superior performance[J]. Environmental Science-Nano,2020,7(3):764-772. doi: 10.1039/C9EN01238A
    [23]
    Lei J J, Xiong Y C, Yu F, et al. Flexible self-supporting CoFe-LDH/MXene film as a chloride ions storage electrode in capacitive deionization[J]. Chemical Engineering Journal,2022,437:135381. doi: 10.1016/j.cej.2022.135381
    [24]
    Dou S, Tao L, Wang R L, et al. Plasma‐assisted synthesis and surface modification of electrode materials for renewable energy[J]. Advanced Materials,2018,30(21):1705850. doi: 10.1002/adma.201705850
    [25]
    Liu Z J, Zhao Z H, Wang Y Y, et al. In situ exfoliated, edge-rich, oxygen‐functionalized graphene from carbon fibers for oxygen electrocatalysis[J]. Advanced Materials,2017,29(18):1606207. doi: 10.1002/adma.201606207
    [26]
    Chen C, Tao L, Du S Q, et al. Advanced exfoliation strategies for layered double hydroxides and applications in energy conversion and storage[J]. Advanced Functional Materials,2020,30(14):1909832. doi: 10.1002/adfm.201909832
    [27]
    Wang Y Y, Xie C, Zhang Z Y, et al. In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides Nanosheets for oxygen evolution reaction[J]. Advanced Functional Materials,2017,28(4):1703363.
    [28]
    Liu H Z, Ji X L, Guo Z H, et al. A high-current hydrogel generator with engineered mechanoionic asymmetry[J]. Nature Communications,2024,15(1):1494-1504. doi: 10.1038/s41467-024-45931-7
    [29]
    Zhang C J, Wang D, Wang Z, et al. Boosting capacitive deionization performance of commercial carbon fibers cloth via structural regulation based on catalytic-etching effect[J]. Energy & Environmental Materials,2023,6(1):e12276.
    [30]
    Jing C, Dong B Q, Zhang Y X. Chemical modifications of layered double hydroxides in the supercapacitor[J]. Energy & Environmental Materials,2020,3(3):346-379.
    [31]
    Gao X R, Wang P K, Pan Z H, et al. Recent progress in two‐dimensional layered double hydroxides and their derivatives for supercapacitors[J]. Chemistry and sustainable chemistry,2020,13(6):1226-1254. doi: 10.1002/cssc.201902753
    [32]
    Fan X Z, Pang Q Q, Yi S S, et al. Intrinsic-structural-modulated carbon cloth as efficient electrocatalyst for water oxidation[J]. Applied Catalysis B-Environmental,2021,292(5):120152.
    [33]
    Gao X Y, Zhao Y F, Dai K Q, et al. NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors[J]. Chemical Engineering Journal,2020,384:123373. doi: 10.1016/j.cej.2019.123373
    [34]
    Qiu W L, Li G R, Luo D, et al. Hierarchical micro-nanoclusters of bimetallic layered hydroxide polyhedrons as advanced sulfur reservoir for high-performance lithium-sulfur batteries[J]. Advanced Science,2021,8(7):2003400. doi: 10.1002/advs.202003400
    [35]
    Sun H M, Miao Y L, Wu T, et al. Exfoliation of bimetallic (Ni, Co) carbonate hydroxide nanowires by Ar plasma for enhanced oxygen evolution[J]. Chemical Communications,2020,56(6):872-875. doi: 10.1039/C9CC08841E
    [36]
    Zhai C X, Yuan J H, Wang Y B, et al. Rectorite in flow-electrode capacitive deionization with three-dimensional current collector to achieve cost-effective desalination[J]. Desalination,2024,573:117217. doi: 10.1016/j.desal.2023.117217
    [37]
    Zhang R J, Dong J D, Zhang W, et al. Synergistically coupling of 3D FeNi-LDH arrays with Ti3C2Tx-MXene nanosheets toward superior symmetric supercapacitor[J]. Nano Energy,2022,91:106633. doi: 10.1016/j.nanoen.2021.106633
    [38]
    Wang H Y, Wei D, He Y J, et al. Carbon nanoarchitectonics with Bi nanoparticle encapsulation for improved electrochemical deionization performance[J]. ACS Applied Materials & Interfaces,2022,14(11):13177-13185.
    [39]
    Wang K, Liu Y, Ding Z B, et al. Chloride pre-intercalated CoFe-layered double hydroxide as chloride ion capturing electrode for capacitive deionization[J]. Chemical Engineering Journal,2022,433:133578. doi: 10.1016/j.cej.2021.133578
    [40]
    Cai Y M, Wang Y, Fang R L, et al. Flexible structural engineering of PPy-NiCo-LDH@Mxene for improved capacitive deionization and efficient hard water softening process[J]. Separation and Purification Technology,2022,280:119828. doi: 10.1016/j.seppur.2021.119828
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article Views(26) PDF Downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return