Volume 36 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
LI Li-shan, LIU Pei-pei, SU Ya-nan, ZHANG Xing-hua, ZHANG Shou-chun. Preparation and characterization of polyacrylonitrile for carbon fiber manufacture by photo-induced polymerization. New Carbon Mater., 2021, 36(2): 429-434. doi: 10.19869/j.ncm.1007-8827.20190031
Citation: LI Li-shan, LIU Pei-pei, SU Ya-nan, ZHANG Xing-hua, ZHANG Shou-chun. Preparation and characterization of polyacrylonitrile for carbon fiber manufacture by photo-induced polymerization. New Carbon Mater., 2021, 36(2): 429-434. doi: 10.19869/j.ncm.1007-8827.20190031

Preparation and characterization of polyacrylonitrile for carbon fiber manufacture by photo-induced polymerization

doi: 10.19869/j.ncm.1007-8827.20190031
Funds:  National Natural Science Foundation of China (U1510119); Key Development Projects for Chinese Academy of Sciences (CXJJ-16M127); Youth Innovation Promotion Association Funds for Chinese Academy of Sciences (2012140); Key R & D project of Shanxi Province (202003D111002); Special Project of Strategic Leading Science and Technoligy of Chinese Academy of Sciences(A) Sub Topic (XDA17040519), and Key R & D Projects of Shanxi Province (201803D121042)
More Information
  • Corresponding author: ZHANG Xing-hua, Associate Professor. E-mail: zhangxh@sxicc.ac.cn
  • Received Date: 2019-03-06
  • Rev Recd Date: 2019-05-17
  • Publish Date: 2021-04-01
  • The control of the molecular weight of polyacrylonitrile and its distribution is important for carbon fiber preparation. Polyacrylonitrile was synthesized by photo-induced solution polymerization using acrylonitrile as the monomer and dimethyl sulfoxide as a solvent. The molecular weight and molecular weight distribution of the polyacrylonitrile were respectively determined by a viscosity method with an Ubbelohde viscometer and gel permeation chromatography. The functional groups on and the chain structure of polyacrylonitrile were analyzed by infrared spectroscopy and nuclear magnetic resonance spectroscopy. Results showed that with an increase of polymerization temperature or monomer concentration, the conversion of the monomer and the molecular weight increased. Compared with the traditional initiator-induced radical polymerization of acrylonitrile, photo-induced polymerization significantly narrows the molecular weight distribution. Polyacrylonitrile with both a high molecular weight and a relatively narrow molecular weight distribution was manufactured by photo-induced solution polymerization.
  • loading
  • [1]
    陈祥宝. 聚合物基复合材料手册[M]. 北京: 化学工业出版, 2004: 121-309.

    Chen X B. Polymer Matrix Composites Handbook[M]. Beijing: Chemical industry press, 2004: 121-309.
    [2]
    贺福, 王茂章. 炭纤维及其复合材料[M]. 北京: 科学出版社, 1995: 1-65.

    He F, Wang M Z. Carbon Fiber and Its Composites[M]. Beijing: Science press, 1995: 1-65.
    [3]
    王鹏. PAN/DMSO溶液的流变性能及干湿纺可防性能研究[D]. 东华大学硕士学位论文, 2005.

    Wang P. Study on the rheological properties of PAN/DMSO solution and the defensibility of dry and wet spinning[D]. Dong Hua University, 2005.
    [4]
    Lin X, Wang C G, Yu M J, et al. The effect of molecular weight on the structure and properties of PAN precuesor[J]. Adv Mater Res,2013,781:2609-2613.
    [5]
    Chung DDL. Carbon Fiber and Composites[M]. Butterworth-Heinemann, Boston, 1994: 1-121.
    [6]
    Ismar E, Sarac A S. Synthesis and characterization of poly (acrylonitrile-co-acrylic acid) as precursor of carbon nanofibers[J]. Polymers for Advanced Technologies,2016,27(10):1383-1388. doi: 10.1002/pat.3807
    [7]
    Kaur J, Millington K, Smith S. Producing high-quality precursor polymer and fibers to achieve theoretical strength in carbon fibers: A review[J]. Journal of Applied Polymer Science,2016,133(38):1-14.
    [8]
    Krishnan G S, Thomas P, Murali N. Synthesis, characterization, and thermo-mechanical properties of poly(acrylonitrile-co-2,3-dimethyl-1,3-butadiene-co-itaconic acid) as carbon fibre polymer precursors[J]. RSC Adv,2016,6(8):6182-6190. doi: 10.1039/C5RA24185E
    [9]
    El-Sawy, Naeem M. Radiation-induced graft polymerization of acrylonitrile onto isotactic polypropylene and poly(tetrafluoroethylene–ethylene) copolymer films[J]. Polymer international,1996,40(3):193-199. doi: 10.1002/(SICI)1097-0126(199607)40:3<193::AID-PI546>3.0.CO;2-F
    [10]
    Zou J T, Wang Y S, Pang W M, et al. Radiation-induced inclusion polymerization of acrylonitrile in urea canals: Toward synthesis of completely isotactic polyacrylonitrile with controlled molecular weight[J]. Macromolecules,2013,46(5):1765-1771. doi: 10.1021/ma3026089
    [11]
    Norman G, MatyjaszewskiK, PaikH, et al. Synthesis of well-defined polyacrylonitrile by atom transfer radical polymerization[J]. Macromolecules,1997,30:6398-6400. doi: 10.1021/ma9706384
    [12]
    Jia Li, Chiantore O, Mendichi RMA, et al. López-quintela. Synthesis of polyacrylonitrile-block-polystyrene copolymers by atom transfer radical polymerization[J]. Macromol Chem Phys,2005,206:1382-1388. doi: 10.1002/macp.200500159
    [13]
    Mah S, Park S, Nam H, et al. Photopolymerization of acrylonitrile in concentrated aqueous zinc halide solutions[J]. Journal of Applied Polymer Science,2000,77:2588-2594. doi: 10.1002/1097-4628(20000919)77:12<2588::AID-APP50>3.0.CO;2-D
    [14]
    Wang G X, Lu M, Hou ZH, et al. Photo-induced single-electron transfer living radical polymerization (SET-LRP) of MMA in the presence of ZnO[J]. Iranian Polymer Journal,2015,24(5):359-365. doi: 10.1007/s13726-015-0328-1
    [15]
    Gaylord N G, Dixit S, Patnaik B K, et al. Photochemically initiated copolymerization of styrene with methyl methacrylate and acrylonitrile in presence of triethylaluminum[J]. Polymer letters,1971,9:927-930. doi: 10.1002/pol.1971.110091211
    [16]
    Jo SM, Matyjaszewski K, Paik H, et al. An investigation into the CuX/2,2-bipyridine (X = Br or Cl) mediated atom transfer radical polymerization of acrylonitrile[J]. Macromolecules,1999,32:6431-6438. doi: 10.1021/ma9905526
    [17]
    Li J, Ding C, Zhang Z, et al. Photo-induced reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylonitrile at ambient temperature: A simple system to obtain high-molecular-weight polyacrylonitrile[J]. Reactive and Functional Polymers,2017,113:1-5. doi: 10.1016/j.reactfunctpolym.2017.02.003
    [18]
    Tang W, Dong H, Matyjaszewski K. Well-defined high-molecular-weight polyacrylonitrile via activators regenerated by electron transfer ATRP[J]. Macromolecules,2007,40:2974-2977. doi: 10.1021/ma070424e
    [19]
    Lamson M, Kopeć M, Ding H, et al. Synthesis of well-defined polyacrylonitrile by ICAR ATRP with low concentrations of catalyst[J]. Polym Sci, Part A: Polym Chem,2016,54:1961-1968. doi: 10.1002/pola.28055
    [20]
    Hou C, Guo Z, LIU J, et al. Atom-transfer radical polymerization of acrylonitrile under microwave irradiation[J]. Journal of Applied Polymer Science,2007,104(3):1382-1385. doi: 10.1002/app.24140
    [21]
    蒋佳玉. 基于可见光引发的丙烯腈自由基聚合体系研究[D]. 江南大学硕士学位论文, 2017.

    Jiang J Y. Study on free radical polymerization of acrylonitrile based on visible light[D]. Jiangnan university, 2017.
    [22]
    何斌鸿. 光照射下丙烯腈活性自由基聚合的研究[J]. 湖南理工学院学报,2015,28(1):62-66.

    He B H. Study on active radical polymerization of acrylonitrile under light irradiation[J]. Hunan University of Science and Technology,2015,28(1):62-66.
    [23]
    Pan X, Lamson M, Yan J, et al. Photoinduced metal-free atom transfer radical polymerization of acrylonitrile[J]. ACS Macro Letters,2015,4(2):192-196. doi: 10.1021/mz500834g
    [24]
    Chen M, Zhong M, Johnson J A. Light-controlled radical polymerization: Mechanisms, methods, and applications[J]. Chem Rev,2016,116(17):10167-10201. doi: 10.1021/acs.chemrev.5b00671
    [25]
    李鑫, 羊梦诗, 徐灿, 等. 丙烯腈单体自由基反应及光谱分析的研究[J]. 光谱学与光谱分析,2014,34(9):2331-2336. doi: 10.3964/j.issn.1000-0593(2014)09-2331-06

    Li X, Yang M S, Xu C, et al. Study on free radical reaction and spectrum analysis of acrylonitrile monomer[J]. Spectroscopy and Spectral Analysis,2014,34(9):2331-2336. doi: 10.3964/j.issn.1000-0593(2014)09-2331-06
    [26]
    Frank E, Steudle L M, Ingildeev D, et al. Carbon fibers: Precursor systems, processing, structure, and properties[J]. Angew Chem Int Ed Engl,2014,53(21):5262-5299. doi: 10.1002/anie.201306129
    [27]
    Bol’bit N M, Dubova E A, Duflot V R, et al. The effect of the polymerization mechanism on the microstructure of chains and the rheology of polyacrylonitrile solutions[J]. Polymer Science Series A,2011,53(4):289-295. doi: 10.1134/S0965545X11040018
    [28]
    Kuz’min N I, Makarov A V, Podol’skaya T I, et al. Rheological properties of concentrated solutions of high-molecular-weight polyacrylonitrile in dimethyl sulfoxide[J]. Fibre Chemistry,2011,43(1):104. doi: 10.1007/s10692-011-9314-3
    [29]
    Zhang S C, Wen Y F, Yang Y G, et al. Effect of itaconic acid content on the thermal behavior ofpolyacrylonitrile[J]. New Carbon Materials,2003,18(4):315-318.
    [30]
    Morris E A, Weisenberger M C, Bradley S B, et al. Synthesis, spinning, and properties of very high molecular weight poly (acrylonitrile-co-methyl acrylate) for high performance precursors for carbon fiber[J]. Polymer,2014,55(25):6471-6482. doi: 10.1016/j.polymer.2014.10.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(1080) PDF Downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return