Volume 35 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
WANG Kai, ZHOU Qing-ping, CHEN Zhi-gang, CHEN You-xin, HE Zhi-yan, JIANG Sheng-hao, CHEN Jie, CHEN Chang-xin. Synthesis of narrow graphene nanoribbons by a metal-catalyzed axial unzipping method. New Carbon Mater., 2020, 35(6): 716-721. doi: 10.19869/j.ncm.1007-8827.20200012
Citation: WANG Kai, ZHOU Qing-ping, CHEN Zhi-gang, CHEN You-xin, HE Zhi-yan, JIANG Sheng-hao, CHEN Jie, CHEN Chang-xin. Synthesis of narrow graphene nanoribbons by a metal-catalyzed axial unzipping method. New Carbon Mater., 2020, 35(6): 716-721. doi: 10.19869/j.ncm.1007-8827.20200012

Synthesis of narrow graphene nanoribbons by a metal-catalyzed axial unzipping method

doi: 10.19869/j.ncm.1007-8827.20200012
Funds:  National Natural Science Foundation of China for Excellent Young Scholars (61622404); Chang Jiang (Cheung Kong) Scholars Program of the Ministry of Education of China (Q2017081);National Natural Science Foundation of China (62074098);Science and Technology Innovation Action Program from the Science and Technology Commission of Shanghai Municipality (15520720200).
  • Received Date: 2020-02-02
  • Rev Recd Date: 2020-04-22
  • Publish Date: 2020-12-31
  • Narrow graphene nanoribbons (GNRs) have great prospects for use in electronic and optoelectronic devices owing to their sizable band gap. However, there has been no good way to prepare high-quality GNRs with a narrow width. Here, a method is reported to prepare narrow, high-quality GNRs and single-wall carbon nanotube (SWCNT)/GNR intramolecular heterojunctions by the metal-catalyzed axial unzipping of SWCNTs, using sputtered Pd as the catalyst at 750 and 800 ℃ under a mixed gas flow of Ar and H2. The unzipping process parameters were optimized. It was found that the unzipping rate of SWCNTs can be adjusted by controlling the hydrogen flow rate. The prepared narrow GNRs and GNR/SWCNT intramolecular heterojunctions are promising for use in next-generation electronic and optoelectronic devices.
  • loading
  • Schwierz F. Graphene transistors[J]. Nature nanotechnology, 2010, 5(7):487.
    Geim A K, Novoselov K S. The rise of graphene[M]//Nanoscience and Technology:A Collection of Reviews from Nature Journals. 2010:11-19.
    Wakabayashi K, Fujita M, Ajiki H, et al. Electronic and magnetic properties of nanographite ribbons[J]. Physical Review B, 1999, 59(12):8271-8282.
    Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867):1229-1232.
    Son Y, Cohen M L, Louie S G, et al. Energy gaps in graphene nanoribbons[J]. Physical Review Letters, 2006, 97(21):216803-216803.
    Wang X, Ouyang Y, Li X, et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors[J]. Physical review letters, 2008, 100(20):206803-206803.
    Yan Q, Huang B, Yu J, et al. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping[J]. Nano Letters, 2007, 7(6):1469-1473.
    Wang X, Dai H. Etching and narrowing of graphene from the edges[J]. Nature Chemistry, 2010, 2(8):661-665.
    Bai J, Duan X, Huang Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask[J]. Nano Letters, 2009, 9(5):2083-2087.
    Jacobberger R M, Kiraly B, Fortin-Deschenes M, et al. Direct oriented growth of armchair graphene nanoribbons on germanium[J]. Nature Communications, 2015, 6(1):1-8.
    Cai J, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature, 2010, 466(7305):470-473.
    Ribeiro R, Poumirol J M, Cresti A, et al. Unveiling the magnetic structure of graphene nanoribbons[J]. Physical Review Letters, 2011, 107(8):6801-6807.
    Sun K, Ji P, Zhang J, et al. On-Surface Synthesis of 8-and 10-armchair graphene nanoribbons[J]. Small, 2019, 15(15):1804526-1804526.
    Zhang H, Lin H, Sun K, et al. On-surface synthesis of rylene-type graphene nanoribbons[J]. Journal of the American Chemical Society, 2015, 137(12):4022-4025.
    Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240):872-876.
    Jiao L, Wang X, Diankov G, et al. Facile synthesis of high-quality graphene nanoribbons[J]. Nature Nanotechnology, 2010, 5(5):321-325.
    Lim J, Maiti U N, Kim N Y, et al. Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures[J]. Nature Communications, 2016, 7(1):10364-10364.
    Wang J, Ma L, Yuan Q, et al. Transition-metal-catalyzed unzipping of single-walled carbon nanotubes into narrow graphene nanoribbons at low temperature[J]. Angewandte Chemie International Edition, 2011, 50(35):8041-8045.
    Ma L, Zeng X C. Unravelling the role of topological defects on catalytic unzipping of sngle-walled carbon nanotubes by single transition metal atom[J]. The Journal of Physical Chemistry Letters, 2018, 9(23):6801-6807.
    Wei D, Xie L, Lee K K, et al. Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes[J]. Nature Communications, 2013, 4:1374.
    Tao C, Jiao L, Yazyev O V, et al. Spatially resolving edge states of chiral graphene nanoribbons[J]. Nature Physics, 2011, 7(8):616-620.
    Parashar U K, Bhandari S, Srivastava R K, et al. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes[J]. Nanoscale, 2011, 3(9):3876-3882.
    Datta S S, Strachan D R, Khamis S M, et al. Crystallographic etching of few-layer graphene[J]. Nano Letters, 2008, 8(7):1912-1915.
    Elias A L, Botellomendez A R, Menesesrodriguez D, et al. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels[J]. Nano Letters, 2010, 10(2):366-372.
    Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes[J]. Physics Reports, 2005, 409(2):47-99.
    Cancado L G, Pimenta M A, Neves B R, et al. Influence of the atomic structure on the raman spectra of graphite edges[J]. Physical Review Letters, 2004, 93(24):247401-247401.
    Casiraghi C, Hartschuh A, Qian H, et al. Raman spectroscopy of graphene edges[J]. Nano Letters, 2009, 9(4):1433-1441.
    Jiao L, Zhang L, Ding L, et al. Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes[J]. Nano Research, 2010, 3(6):387-394.
    Chen C, Wu J Z, Lam K T, et al. Graphene nanoribbons under mechanical strain[J]. Advanced Materials, 2015, 27(2):303-309.
    Xie L, Wang H, Jin C, et al. Graphene nanoribbons from unzipped carbon nanotubes:Atomic structures, Raman spectroscopy, and electrical properties[J]. Journal of the American Chemical Society, 2011, 133(27):10394-10397.
    Kong J, Chapline M G, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors[J]. Advanced Materials, 2001, 13(18):1384-1386.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(557) PDF Downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return