Volume 35 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
PAN Yue-xiu, BAO Jia-wei, WANG Fan-wen, ZHANG Ling-dong, WANG Yang-wei, CHENG Xing-wang, YANG Yun-hua. Dynamic compressive properties of unidirectional composites made of TG800 carbon fiber and epoxy resin. New Carbon Mater., 2020, 35(6): 785-792. doi: 10.19869/j.ncm.1007-8827.20200128
Citation: PAN Yue-xiu, BAO Jia-wei, WANG Fan-wen, ZHANG Ling-dong, WANG Yang-wei, CHENG Xing-wang, YANG Yun-hua. Dynamic compressive properties of unidirectional composites made of TG800 carbon fiber and epoxy resin. New Carbon Mater., 2020, 35(6): 785-792. doi: 10.19869/j.ncm.1007-8827.20200128

Dynamic compressive properties of unidirectional composites made of TG800 carbon fiber and epoxy resin

doi: 10.19869/j.ncm.1007-8827.20200128
  • Received Date: 2020-07-10
  • Rev Recd Date: 2020-10-13
  • Publish Date: 2020-12-31
  • The dynamic compressive properties of unidirectional composites made of TG800 carbon fibers and an epoxy resin were tested by the split Hopkinson pressure bar method. Effects of the fiber diameter and surface treatment by anodic oxidation on the dynamic compressive properties and fracture failure modes of the composites were investigated by SEM combined with numerical simulation. Results indicated that the TG800/epoxy resin composites had a brittle fracture behavior and strength increased as strain rate, interface strength or fiber diameter increased during dynamic compressive property testing. With strong interfacial bonding enabled by the surface treatment, when the fiber diameter was increased from 5 to 6 μm the dynamic compressive strength increased by about 18% and the primary failure mode changed from fiber breakage and debonding between fiber and resin to plastic deformation of the resin and debonding between fiber and resin. When 5.4 μm diameter fibers were used, a comparison of weak (not oxidized) versus strong interfacial bonding, showed that the dynamic compressive strength for the former was about 6% lower, and the failure mode of the latter was fiber breakage, plastic deformation of the resin, and debonding between fiber while the former was only debonding between fiber and resin.
  • loading
  • 郭玉明, 冯志海, 王金明. 高性能PAN基炭纤维及其复合材料在航天领域的应用[J]. 高科技纤维与应用, 2007, 32(5):1-7+17. (GUO Yu-ming, FENG Zhi-hai, WANG Jin-ming. Application of pan-based carbon fiber and its composites on aerospace[J]. Hi-Tech Fiber and Application, 2007, 32(5):1-7+17.)
    彭孟娜, 马建伟. 炭纤维及其在汽车轻量化中的应用[J]. 合成纤维工业, 2018, 41(1):53-57. (PENG Meng-na, MA Jian-wei. Carbon fiber and its application in light weighting of automobiles[J]. China Synthetic Fiber Industry, 2018, 41(1):53-57.)
    张敏, 朱礼斌, 朱波.等. 炭纤维及其复合材料在油气田领域的应用及展望[J]. 高科技纤维与应用, 2017, 42(3):1-6. (ZHANG Min, ZHU Li-bin, ZHU Bo, et al. Current application and prospect of carbon fiber and itscomposites in oil-gas field[J]. Hi-Tech Fiber and Application, 2017, 42(3):1-6.)
    LI Ye, LIU Shi-tai, SUN Jian-ming, et al. Effects of the oxygen content of reduced graphene oxide on the mechanical and electromagnetic interference shielding properties of carbon fiber/reduced graphene oxide-epoxy composites[J]. New Carbon Materials, 2019, 34(5):489-498.
    王莉, 熊舒, 肇研,等. T800级炭纤维复合材料抗冲击性能[J]. 航空材料学报, 2018, 38(5):147-151. (WANG Li, XIONG Shu, ZHAO Yan, et al. Impact resistance of T800 carbon fiber composite materials[J]. Journal of Aeronautical Materials. 2018, 38(5):147-151.)
    鲍佳伟, 潘月秀, 程兴旺,等. T800炭纤维增强树脂基单向复合材料动态力学性能测试研究[J]. 新技术新工艺, 2018(11):1-5. (BAO Jia-wei, PAN Yue-xiu, CHENG Xing-wang, et al. Research on test of dynamic mechanical properties of T800 carbon fiber reinforced plastics unidirectional composites[J]. New Technology and New Process, 2018(11):1-5.)
    顾善群, 刘燕峰, 李军,等. 炭纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8):110-117. (GU Shan-qun, LIU Yan-feng, LI Jun, et al. High speed impact properties of carbon fiber/epoxy resin composites[J]. Journal of Materials Engineering, 2019, 47(8):110-117.)
    Gilat A, Goldberg R K, Roberts G D. Experimental study of strain-rate-dependent behavior of carbon/epoxy composite[J]. Composites Science and Technology, 2002, 62(10-11):1469-1476.
    岳中仁, 李仍元, 王平华,等. 炭纤维直径对结构和性能的影响[J]. 合成纤维工业, 1991, 14(3):29-32. (YUE Zhong-rem, LI Reng-yuan, WANG Ping-hua, et al. Effect of fiber diameter on the surface and properties of carbon fiber[J]. Synthetic Fiber Industry. 1991, 14(3):29-32.)
    夏丽刚, 李爱菊, 阴强,等. 炭纤维表面处理及其对炭纤维/树脂界面影响的研究[J]. 材料导报, 2006, 50(5):254-257. (XIA Li-gang, LI Ai-ju, YIN Qiang, et al. Surface treatment of carbon fiber and the effects on the interface between the fiber and the resin[J], Materials Reports. 2006, 50(5):254-257.)
    贺福. 炭纤维及石墨纤维[M]. 北京:化学工业出版社, 2010. (HE F. Carbon Fibers and Graphite Fibers[M]. Beijing:Chemical Industry Press, 2010.
    ZHANG Qing-dong, CAO Qiang, et al. A modified Johnson-Cook model for advanced high-strength steels over a wide range of temperatures[J]. Journal of Material Engineering and Performance, 2014, 23:4336-4341.
    Livermore Software Technology Corporation. LS-DYNA Keyword user's manual version 971[EB/OL], 2007.
    宋力, 胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005(04):368-373. (SONG Li, HU Shi-sheng. Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves, 2005(04):368-373.)
    张勇波, 傅惠民, 王治华. CCF300/QY8911单向纤维增强复合材料纵向压缩性能预测[J]. 航空动力学报, 2013, 68(6):1231-1235. (ZHANG Yong-bo, FU Hui-min, WANG Zhi-hua. Compressive strength prediction of CCF300/QY8911 unidirectional fiber reinforced composites[J]. Journal of Aerospace Power, 2013, 68(6):1231-1235.)
    朱文墨, 李刚, 杨小平. 连续纤维增强树脂复合材料纵向压缩强度预测模型的发展及其影响因素[J]. 复合材料学报, 2020, 37(01):1-15. (ZHU Wen-mo,LI Gang,YANG Xiao-ping.Development of prediction model and influencing factors of longitudinal compressive strength for continuous fiber reinforced polymer composites[J]. Acta Materiae Compositae Sinica, 2020, 37(01):1-15.)
    Ningbo Xie, Robert A.Smith, Supratik Mukhopadhyay, et al. A numerical study on the influence of composite wrinkle defect geometry on compressive strength[J]. Materials & Design, 2018, 140(15):7-20.
    吴莎, 刘建超, 廖英强. 碳纤维复合材料层合板压缩性能的相关影响因素[J]. 材料科学与工艺, 2017, 25(3):63-68. (WU Sha, LIU Jian-chao, LIAO Ying-qiang. The influencing factors of compressive strength in carbon fiber reinforced compsites laminates[J]. Materials Science &Technology. 2017, 25(3):63-68.)
    侯学勤, 范金娟, 何玉怀. 纤维增强树脂基复合材料断口分析[J]. 四川兵工学报, 2010, 31(11):123-126. (HOU Xue-qin, FAN Jin-juan, HE Yu-huai, Fracture Analysis of Fiber Reinforced Composites[J].Journal of Sichuan Ordnance, 2010, 31(11):123-126.)
    Emile S.G, Charlotte R, Paul R. Fractographic observations on delamination growth and the subsequent migration through the laminate[J]. Composites Science and Technology, 2009, 69:2345-2351.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(1009) PDF Downloads(140) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return