HAN Yong-jun, LI Qing-bin, YAN Qing-zhi, TANG Rui. Properties of silicon carbide-reinforced graphite composites prepared by a reactive sintering method. New Carbon Mater., 2015, 30(1): 92-96.
Citation: HAN Yong-jun, LI Qing-bin, YAN Qing-zhi, TANG Rui. Properties of silicon carbide-reinforced graphite composites prepared by a reactive sintering method. New Carbon Mater., 2015, 30(1): 92-96.

Properties of silicon carbide-reinforced graphite composites prepared by a reactive sintering method

Funds:  National Natural Science Foundation of China (U1134102).
  • Received Date: 2014-10-10
  • Accepted Date: 2015-02-13
  • Rev Recd Date: 2015-01-22
  • Publish Date: 2015-02-28
  • Silicon carbide-reinforced graphite composites were prepared by hot-pressing mixtures of flake graphite and Si powder with various mass ratios under vacuum. The microstructure and phase compositions were characterized by SEM and XRD. Results indicated that SiC, resulting from the reaction between graphite and silicon, was uniformly dispersed in the graphite matrix. The bend strength of the composites increased from 112 to 206 MPa with increasing silicon content from 28.06 to 37.94 mass%. The oxidation resistance of the composites increased with their silicon content. The coefficient of friction of the composites remainedat a low constant value of about 0.1 when the Si content was below 31.46 mass%.
  • loading
  • Tricot G, Nicolaus N, Diss P, et al. Inhibition of the catalytic oxidation of carbon/carbon composite materials by an aluminophosphate coating
    [J]. Carbon, 2012, 50(10): 3440-3445.
    Zhang Y H, Xiao Z C, Wang J P, et al. Effect of pyrocarbon content on thermal and frictional properties in C/C preforms of C/C-SiCcomposites
    [J]. Wear, 2010, 269(1): 132-138.
    Siegrist M E, Amstad E D, Lffler J F. Tribological properties of graphite-and ZrC-reinforced bulk metallic glass composites
    [J]. Intermetallics, 2007, 15(9): 1228-1236.
    Dienwiebel M, Verhoeven G S, Pradeep N, et al. Superlubricity of graphite
    [J]. Physical Review Letters, 2004, 92(12): 126101.
    蒋建纯, 黄伯云, 熊 翔. 炭/炭复合航空刹车材料的结构完整性对摩擦系数的影响
    [J]. 新型炭材料, 2003, 18(2): 111-116. (JIAN Jian-chun, HUANG Bo-yang, XIONG Xiang. Effect of structure intergrality of aircraft braking C/C composites on their friction coefficients
    [J]. New Carbon Materials, 2003, 18(2): 111-116.)
    宋永忠, 邱海鹏, 郭全贵, 等. 粘结剂含量对石墨材料电、热传导性能的影响
    [J]. 新型炭材料, 2002, 17(2): 56-60. (SONG Yong-zhong, QIU Hai-peng, GUO Quan-gui, et al. Effect of the binder content on the electrical and thermal conductivity of bulk graphite
    [J]. New Carbon Materials, 2002, 17(2): 56-60.)
    Xia H, Wang J, Shi Z, et al. Reciprocating friction and wear properties of mesocarbonmicrobeads-based graphite and siliconized graphite
    [J]. Journal of Nuclear Materials, 2013, 433(1): 341-344.
    Krasilnikov A Y, Krasilnikov A A. Magnetic clutches and magnetic systems in sealed machines
    [J]. Chemical and Petroleum Engineering, 2012, 48(5): 306-310.
    Yoshio M, Wang H, Fukuda K, et al. Carbon-coated Si as a lithium-ion battery anode material
    [J]. Journal of the Electrochemical Society, 2002, 149(12): A1598-A1603.
    Xie J, Cao G S, Zhao X B. Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells
    [J]. Materials Chemistry and Physics, 2004, 88(2): 295-299.
    Buqa H, Goers D, Holzapfel M, et al. High rate capability of graphite negative electrodes for lithium-ion batteries
    [J]. Journal of the Electrochemical Society, 2005, 152(2): A474-A481.
    Alias M, Crosnier O, Sandu I, et al. Silicon/graphite nanocomposite electrodes prepared by low pressure chemical vapor deposition
    [J]. Journal of Power Sources, 2007, 174(2): 900-904.
    冉丽萍, 易茂中, 蒋建献, 等. 炭/炭复合材料 MoSi2/SiC高温抗氧化复合涂层的制备及其结构
    [J]. 新型炭材料, 2006, 21(3): 231-236. (RAN Li-ping, YI Mao-zhong, JIANG Jian-xian, et al. MoSi2/SiC high temperature anti-oxidation compound coating on carbon/carbon composites and its anti-oxidation behavior
    [J]. New Carbon Materials, 2006, 21(3): 231-236.)
    Boecker W D, Hailey L N. Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
    [P]. U.S. Patent 4,525, 461. 1985-6-25.
    Safi S, Kazemzadeh A. MCMB-SiC composites; new class high-temperature structural materials for aerospace applications
    [J]. Ceramics International, 2013, 39(1): 81-86.
    王艳香, 谭寿洪, 江东亮. 反应烧结碳化硅的研究与进展
    [J]. 无机材料学报, 2004, 19(3): 456-462. (Wang Yan-xiang, TanShou-hong, Jiang Dong-liang. Research and development of reaction sintered silicon carbide
    [J]. Journal of Inorganic Materials, 2004, 19(3): 456-462.)
    Zhu C, Lang J, Ma N. Preparation of Si-diamond-SiC composites by in-situ reactive sintering and their thermal properties
    [J]. Ceramics International, 2012, 38(8): 6131-6136.
    Samoilov V M, Porodzinskiy I A. Preparation and investigation of silicon carbide materials on the basis of reaction-bonded silicon carbide
    [J]. Inorganic Materials: Applied Research, 2014, 5(5): 540-544.
    刘桂香. 炭/炭复合材料的抗氧化研究
    [J]. 炭素, 2004, (2): 24-26. (Liu Gui Xiang. Study on the anti-oxidation of carbon/carbon composite
    [J].Carbon(Chinese), 2004, (2): 24-26.)
    Yang X, Huang Q, Su Z, et al. Resistance to oxidation and ablation of SiC coating on graphite prepared by chemical vapor reaction
    [J]. Corrosion Science, 2013, 75: 16-27.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1060) PDF Downloads(1179) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return