GUO De-chao, ZENG Xie-rong, DENG Fei, ZOU Ji-zhao, SHENG Hong-chao. Preparation and electrochemical performance of expanded graphites as anode materials for a lithium-ion battery. New Carbon Mater., 2015, 30(5): 419-424.
Citation: GUO De-chao, ZENG Xie-rong, DENG Fei, ZOU Ji-zhao, SHENG Hong-chao. Preparation and electrochemical performance of expanded graphites as anode materials for a lithium-ion battery. New Carbon Mater., 2015, 30(5): 419-424.

Preparation and electrochemical performance of expanded graphites as anode materials for a lithium-ion battery

Funds:  National Natural Scientific Foundation of China(51272161,51202150);Science and Technology Project of Shenz-hen(JCYJ20130326113728218);Two Hundred Plan for Talent Station of Shenzhen(Shenfu [2008]182);Sci-ence and Technology R&D Program of Shenzhen(CXB201005240010A).
  • Received Date: 2014-12-26
  • Accepted Date: 2015-11-10
  • Rev Recd Date: 2015-09-10
  • Publish Date: 2015-10-28
  • Expanded flake graphites (EFGs) with different expansion volumes were prepared by an electrophoresis intercalation method using natural flake graphite as the raw material, concentrated HNO3 and acetic anhydride as intercalates and KMnO4 as oxidant. Results indicate that the density of structural defects, and the surface area and d002 increase after the intercalation. EFG-0.7 obtained with a KMnO4 mass percentage of 0.7 wt% has a capacity of 521 mAh/g when used as the anode of a lithium ion battery, which is significantly higher than the theoretical capacity of natural graphite. EFG-0.7 retains more than 99% of its capacity after 30 cycles at 0.2 C and its capacity stabilizes at 188 mAh/g after 50 cycles at 1.0 C. All the EFGs exhibit excellent performance in high-rate charge-discharge. The resistance of the solid-electrolyte interface film and the charge transfer resistance of the EFGs are smaller than natural flake graphite as revealed by electrochemical impedance spectroscopy. The improved electrochemical performance of the EFGs can be ascribed to their increased surface area and d002, and the larger number of structural defects.
  • loading
  • Armand M, Tarascon J M. Buliding better batteries[J]. Nature, 2008, 451(7179):652-657.
    Zaghib K, Song X, Guerfi A, et al. Effect of particle morphology on lithium intercalation rates in natural graphite[J]. J Power Sources, 2003, 124(2):505-512.
    Fukuda K, Kikuya K, Isono K, et al, Foliated natural graphite as the anode material for rechargeable lithium-ion cells[J]. J Power Sources, 1997, 69(1-2):165-168.
    Herstedt M, Fransson L, Edström K. Rate capability of natural Swedish graphite as anode material in Li-ion batteries[J]. J Power Sources, 2003, 124(1):191-196.
    Sawai K, Ohzuku T. Factory affecting rate capability of graphite electrodes for lithium-ion batteries[J]. J Electrochemical Soc, 2003, 150(6):674-678.
    刘宇,王保峰,解晶莹,等.二次锂离子电池中SEI膜的电化学性能表征[J]. 无机材料学报, 2003, 18(2):307-312.(LIU Yu, WANG Bao-feng, XIE Jing-ying, et al. Electrochemical characteristic of SEI in secondary lithium batteries[J]. Journal of Inorganic Materials, 2003, 18(2):307-312.)
    Liu S H, Ying Z, Wang Z M, et al. Improving the electrochemical properties of natural graphite spheres by coating with a pyrolytic carbon shell[J]. New Carbon Materials, 2008, 23(1):30-36.
    Jang S M, Miyawaki Jin, Masaharu Tsuji, et al. Preparation of a carbon nanofiber/natural graphite composite and an evaluation of its electrochemical properties as an anode material for a Li-ion battery[J]. New Carbon Materials, 2010, 25(2):89-95.
    曾燮榕,王明福,谢盛辉,等.可膨胀石墨的制备方法:中国,C01B31/04, 200410027920[P]. 2005-03-16.
    田雷雷,庄全超,李佳,等.锂离子在石墨烯材料中的嵌入脱出机制[J]. 科学通报, 2011, 56(18):1431-1439.(TIAN Lei-lei, ZHUANG Quan-chao, LI Jia, et al. Mechanism of intercalation and deintercalation of lithium ion in graphene nanosheets[J]. Chinese Sci Bull, 2011, 56(18):1431-1439.)
    Lu M, Cheng H, Yang Y. A comparison of solid electrolyte interphase(SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells[J]. Electrochimica Acta, 2008, 53(9):3539-3546.
    Eom J Y, Park J W, Kwon H S. Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition[J]. Journal of Power Sources, 2006, 157(1):507-514.
    Wang G X, Shen X P, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J]. Carbon, 2009, 47:2049-2053.
    A Abouimrane, Compton O C, Amine K, et al. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries[J]. J Phys Chem, 2010, 114(29):12800-12804.
    Sato K , Noguchi M , Demachi A , et al. A mechanism of lithium storage in disordered carbons[J]. Science, 1994, 264(5158):556-558.
    Tokumitsu K, Fujimoto H, Mabuchi A, et al. High capacity carbon anode for Li-ion battery:A theoretical explanation[J]. Carbon, 1999, 37(10):1599-1605.
    Peled E, Menachem C, Two D B, et al. Improved graphite anode for lithium-ion batteries[J]. J Electrochem Soc, 1996, 143(10):L4.
    Zheng T, Liu Y H, Fuller EW, et al. Lithium insertion in high-capacity carbonaceous materials[J]. Journal of The Electrochemical Society, 1995, 142(8):2581-2590.
    Zou L, Kang F Y, Zheng Y P, et al. Modified natural flake graphite with high cycle performance as anode material in lithium ion batteries[J]. Electrochemical Acta, 2009, 54:3930-3934.
    杨绍斌,费晓飞,蒋娜.增大层间距对天然石墨可逆储锂性能的影响研究[J]. 化学学报, 2009, 67(17):1995-2000.(YANG Shao-bin, FEI Xiao-fei, JIANG Na. Influences of Increasing Interlayer Space on the Properties of Lithium Storage of Natural Graphite[J]. Acta Chimica Sinica, 2009, 67(17):1995-2000.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(836) PDF Downloads(634) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return