ZHANG Ya-ting, LI Ke-ke, LIU Guo-yang, ZHOU An-ning, WANG Lu, QIU Jie-shan. Synthesis and photocatalytic CO2 reduction activity of a coal-based graphene assembly. New Carbon Mater., 2015, 30(6): 539-544.
Citation: ZHANG Ya-ting, LI Ke-ke, LIU Guo-yang, ZHOU An-ning, WANG Lu, QIU Jie-shan. Synthesis and photocatalytic CO2 reduction activity of a coal-based graphene assembly. New Carbon Mater., 2015, 30(6): 539-544.

Synthesis and photocatalytic CO2 reduction activity of a coal-based graphene assembly

Funds:  National Natural Science Foundation of China (21276207, U1203292).
  • Received Date: 2015-10-26
  • Accepted Date: 2016-01-05
  • Rev Recd Date: 2015-12-02
  • Publish Date: 2015-12-28
  • A 3D graphene assembly was prepared by chemical reduction using coal-based graphene oxide as the raw material. The morphologies and structures of the samples were analyzed by SEM, TEM, FT-IR and Raman spectroscopy. Results show that the 3D graphene has a high catalytic activity for photocatalytic CO2 reduction in a fixed bed reactor and the yield of the target product, methanol, is up to 65.91 mol/g of catalyst.
  • loading
  • Lacis A A, Schmidt G A, Rind D, et al. Atmospheric CO2: Principal control knob governing Earth's temperature[J]. Science, 2010, 330(6002): 356-359.
    Das S, Daud W M A W. A review on advances in photocatalysts towards CO2 conversion[J]. Rsc Advances, 2014, 4(40): 20856-20893.
    Sastre F, Puga A V, Liu L, et al. Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation[J]. Journal of the American Chemical Society, 2014, 136(19): 6798-6801.
    Taheri Najafabadi A. CO2 chemical conversion to useful products: an engineering insight to the latest advances toward sustainability[J]. International Journal of Energy Research, 2013, 37(6): 485-499.
    吴聪萍, 周 勇, 邹志刚. 光催化还原CO2的研究现状和发展前景[J]. 催化学报, 2011, 32(10): 1565-1572. (Wu C P, Zhou Y, Zou Z G. Research progress in photocatalytic conversion of CO2[J]. Chinese Journal of Catalysis, 2011, 32(10): 1565-1572.)
    Machado B F, Serp P. Graphene-based materials for catalysis[J]. Catalysis Science & Technology, 2012, 2(1): 54-75.
    Liu W, Cai J, Ding Z, et al. TiO2/RGO composite aerogels with controllable and continuously tunable surface wettability for varied aqueous photocatalysis[J]. Applied Catalysis B: Environmental, 2015, 174: 421-426.
    张丽芳, 魏 伟, 吕 伟, 等. 石墨烯基宏观体: 制备, 性质及潜在应用[J]. 新型炭材料, 2013, 28(3): 161-171. (Zhang L F, Wei W, Lv W, et al. Graphene-based macroform: preparation, properties and applications[J]. New Carbon Materials, 2013, 28(3): 161-171.)
    Fechete I, Wang Y, Védrine J C. The past, present and future of heterogeneous catalysis[J]. Catalysis Today, 2012, 189(1): 2-27.
    Tang Z, Shen S, Zhuang J, et al. Noble-metal- promoted three-dimensional macroassembly of single-layered graphene oxide[J]. Angewandte Chemie, 2010, 122(27): 4707-4711.
    Fan X, Manchon M G, Wilson K, et al. Coupling of Heck and hydrogenation reactions in a continuous compact reactor[J]. Journal of Catalysis, 2009, 267(2): 114-120.
    王旭珍, 刘 宁, 胡 涵, 等. 3D 二硫化钼/石墨烯组装体的制备及其催化脱硫性能[J]. 新型炭材料, 2014, 29(2): 81-88. (Wang X Z, Liu N, Hu H, et al. Fabrication of three-dimensional MoS2/graphene hybrid monoliths and their catalytic performance for hydrodesulfurization[J]. New Carbon Materials, 2014, 29(2): 81-88.)
    张亚婷, 周安宁, 张晓欠, 等. 以太西无烟煤为前驱体制备煤基石墨烯的研究[J]. 煤炭转化, 2013, 36(4): 57-61. (Zhang Y T, Zhou A N, Zhang X Q, et al. Preparation of the Graphene from TaiXi Anthracite[J]. Coal Conversion, 2013, 36(4): 57-61.)
    William S, Hummers J R, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80(6): 1339.
    Bi H, Yin K, Xie X, et al. Low temperature casting of graphene with high compressive strength[J]. Advanced Materials, 2012, 24(37): 5124-5129.
    Worsley M A, Olson T Y, Lee J R I, et al. High surface area, sp2-cross-linked three-dimensional graphene monoliths[J]. The Journal of Physical Chemistry Letters, 2011, 2(8): 921-925.
    Pham H D, Pham V H, Cuong T V, et al. Synthesis of the chemically converted graphene xerogel with superior electrical conductivity[J]. Chemical Communications, 2011, 47(34): 9672-9674.
    Tong X, Wang H, Wang G, et al. Controllable synthesis of graphene sheets with different numbers of layers and effect of the number of graphene layers on the specific capacity of anode material in lithium-ion batteries[J]. Journal of Solid State Chemistry, 2011, 184(5): 982-989.
    Tang B, Guoxin H, Gao H. Raman spectroscopic characterization of graphene[J]. Applied Spectroscopy Reviews, 2010, 45(5): 369-407.
    吴娟霞, 徐 华, 张 锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72(3): 301-318. (Wu J X, Xu H, Zhang J. Raman spectroscopy of graphene[J]. Acta Chim Sinica, 2014, 72(3): 301-318.)
    Malard L M, Nilsson J, Elias D C, et al. Probing the electronic structure of bilayer graphene by Raman scattering[J]. Physical Review B, 2007, 76(20): 201401.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(756) PDF Downloads(766) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return