Wang Ke-wei, Tan Bi-en. Synthesis of porous carbons from microporous organic polymers. New Carbon Mater., 2016, 31(3): 232-242.
Citation: Wang Ke-wei, Tan Bi-en. Synthesis of porous carbons from microporous organic polymers. New Carbon Mater., 2016, 31(3): 232-242.

Synthesis of porous carbons from microporous organic polymers

Funds:  National Natural Science Foundation of China (21474033, 51273074, 51173058);New Century Talents Scheme (NCET-10-0389).
  • Received Date: 2016-05-02
  • Accepted Date: 2016-06-28
  • Rev Recd Date: 2016-06-03
  • Publish Date: 2016-06-28
  • Porous carbons have been a hot research area in chemistry, physics and materials owing to their high specific surface areas, plentiful pores, excellent stability and good conductivity, which have been exploited in various applications such as catalysis, drug delivery and electrochemistry. Microporous organic polymers (MOPs) are currently an important class of porous polymers that have developed rapidly in recent years. MOPs have the advantages of good chemical and physical stability, tunable pore structure, high surface area and easy functionalization compared with traditional porous materials such as zeolite and silica gel. Because of the excellent thermal stability of MOPs,porous carbons with a tunable pore structure can be obtained by their carbonization. In this review, we outline how MOPs were used to make porous carbons and highlight their synthesis and applications.
  • loading
  • Ben T, Li Y, Zhu L, et al. Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF)[J]. Energ Environ Sci, 2012, 5(8): 8370-8376.
    Mai W, Sun B, Chen L, et al. Water-dispersible, responsive, and carbonizable hairy microporous polymeric nanospheres[J]. J Am Chem Soc, 2015, 137(41): 13256-13259.
    Zhang W, Wu Z Y, Jiang H L, et al. Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis[J]. J Am Chem Soc, 2014, 136(41): 14385-14388.
    Vijayan B K, Dimitrijevic N M, Finkelstein-Shapiro D, et al. Coupling Titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites[J]. ACS Catal, 2012, 2(2): 223-229.
    Lin T, Chen I, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350 (6267): 1508-1513.
    Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption date for gas/solid systems[J]. Pure & Appl Chem, 1985, 57(4): 603-619.
    Li Y, Shi J. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications[J]. Adv Mater, 2014, 26(20): 3176-3205.
    Li Z, Wu D, Liang Y, et al. Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties[J]. J Am Chem Soc, 2014, 136(13): 4805-4808.
    Zou C, Wu D, Li M, et al. Template-free fabrication of hierarchical porous carbon by constructing carbonyl crosslinking bridges between polystyrene chains[J]. J Mater Chem, 2010, 20(4): 731-735.
    Wang K, Huang L, Razzaque S, et al. Fbrication of microporous carbon spheres from hypercrosslinked microporous polymers[J]. Small, 2016, 12(23): 3134-3142.
    Ouyang Y, Shi H, Fu R, et al. Highly monodisperse microporous polymeric and carbonaceous nanospheres with multifunctional properties[J]. Sci Rep, 2013, 3: 1430.
    McKeown N B, Makhseed S, Budd P M. Phthalocyanine-based nanoporous network polymers[J]. Chem Commun, 2002: 2780-2781.
    McKeown N B, Hanif S, Msayib K, et al. Porphyrin-based nanoporous network polymers[J]. Chem Commun, 2002: 2782-2783.
    Tsyurupa M P, Davankov V A. H ypercrosslinked polymers: basic principle of preparing the new class of polymeric materials[J]. React Funct Polym, 2002, 53: 193-293.
    Xu S, Luo Y, Tan B. Recent development of hypercrosslinked microporous organic polymers[J]. Macromol Rapid Commun, 2013, 34(6): 471-484.
    Li B, Gong R, Wang W, et al. A New Strategy to Microporous Polymers: Knitting Rigid Aromatic Building Blocks by External Cross-Linker[J]. Macromolecules, 2011, 44(8): 2410-2414.
    Wood C D, Tan B, Trewin A, et al. Hydrogen storage in microporous hypercrosslinked organic polymer networks[J]. Chem Mater, 2007, 19(8): 2034-2048.
    Jiang J X, Su F, Trewin A, et al. Conjugated microporous poly(aryleneethynylene) networks[J]. Angew Chem Int Ed, 2007, 46(45): 8574-8578.
    Jiang J X, Su F, Trewin A, et al. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks[J]. J Am Chem Soc, 2008, 130(24): 7710-7720.
    Xu Y, Jin S, Xu H, et al. Conjugated microporous polymers: Design, synthesis and application[J]. Chem Soc Rev, 2013, 42(20): 8012-8031.
    Côté A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310 (5751): 1166-1170.
    Feng X, Ding X, Jiang D. Covalent organic frameworks[J]. Chem Soc Rev, 2012, 41(18): 6010-6022.
    Ding S Y, Wang W. Covalent organic frameworks (COFs): From design to applications[J]. Chem Soc Rev, 2013, 42(2): 548-568.
    Cooper A I. Conjugated microporous polymers[J]. Adv Mater, 2009, 21(12): 1291-1295.
    Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater, 2009, 8: 76-80.
    Liu X, Zhou L, Zhao Y, et al. Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor[J]. ACS Appl Mater Inter, 2013, 5(20): 10280-10287.
    Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angew Chem Int Ed, 2009, 48(50): 9457-9460.
    Zhang K, Kopetzki D, Seeberger P H, et al. Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks[J]. Angew Chem Int Ed, 2013, 52(5): 1432-1436.
    Xu Y, Chen L, Guo Z, et al. Light-emitting conjugated polymers with microporous network architecture: interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence[J]. J Am Chem Soc, 2011, 133(44): 17622-17625.
    Reuter K, Scheffler M. Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure[J]. Pys Rev B, 2001, 65(3): 035406 (1-11).
    Feng X, Liang Y, Zhi L, et al. Synthesis of microporous carbon nanofibers and nanotubes from conjugated polymer network and evaluation in electrochemical capacitor[J]. Adv Funct Mater, 2009, 19(13): 2125-2129.
    Liang Y, Feng X, Zhi L, et al. A simple approach towards one-dimensional mesoporous carbon with superior electrochemical capacitive activity[J]. Chem Commun, 2009: 809-811.
    Bao Q, Bao S, Li C, et al. Supercapacitance of solid carbon nanofibers made from ethanol flames[J]. J Phys Chem C, 2008, 112(10): 3612-3618.
    Li Y, Roy S, Ben T, et al. Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application[J]. Phys Chem Chem Phys, 2014, 16(25): 12909-12917.
    Li Y, Ben T, Zhang B, et al. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks[J]. Sci Rep, 2013, 3: 2420.
    Zhang Y, Li B, Williams K, et al. A new microporous carbon material synthesized via thermolysis of a porous aromatic framework embedded with an extra carbon source for low-pressure CO2 uptake[J]. Chem Commun, 2013, 49(87): 10269-10271.
    Tan W, Zhang Y. Multifunctional quantum-dot-based magnetic chittosan nanobeads[J]. Adv Mater, 2005, 17(19): 2375-2380.
    Raymundo-Piñero E, Leroux F, Béguin F. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer[J]. Adv Mater, 2006, 18(14): 1877-1882.
    Xiang Z, Xue Y, Cao D, et al. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals[J]. Angew Chem Int Ed, 2014, 53(9): 2433-2437.
    Wu Z S, Chen L, Liu J, et al. High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers[J]. Adv Mater, 2014, 26(9): 1450-1455.
    Lin Q, Bu X, Kong A, et al. Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts[J]. Adv Mater, 2015, 27(22): 3431-3436.
    Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers[J]. Angew Chem Int Ed, 2004, 43(18): 2334-2375.
    Yaghi O M, O' Keefe M, Ockwing N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423: 705-714.
    Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472.
    Davankov V A, Rogozhin S V, Tsyurupa M P. US 3729457, 1971. [Chem Abstr, 1971, 75,6841].
    Jiang J, Copoper A. Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis [M]. Springer, 2010, 293.
    Tsyurupa M P, Davankov V A. Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review[J]. React Funct Polym, 2006, 66(7): 768-779.
    Zeng Q, Wu D, Zou C, et al. Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene-divinylbenzene copolymer nanospheres[J]. Chem Commun, 2010, 46(32): 5927-5929.
    Xu F, Cai R, Zeng Q, et al. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors[J]. J Mater Chem, 2011, 21(6): 1970-1976.
    Zhong H, Xu F, Li Z, et al. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes[J]. Nanoscale, 2013, 5(11): 4678-4682.
    Chen J, Lang Z, Xu Q, et al. Facile preparation of monodisperse carbon spheres: Template-free construction and their hydrogen storage properties[J]. ACS Sustain Chem Eng, 2013, 1(8): 1063-1068.
    Song K, Liu P, Wang J, et al. Controlled synthesis of uniform palladium nanoparticles on novel micro-porous carbon as a recyclable heterogeneous catalyst for the Heck reaction[J]. Dalton Trans, 2015, 44(31): 13906-13913.
    Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl Catal B-Environ, 2005, 56(1-2): 9-35.
    Feng Y, Alonso-Vante N. Nonprecious metal catalysts for the molecular oxygen-reduction reaction[J]. phys status solidi B, 2008, 245(9): 1792-1806.
    Song K, Zou Z, Wang D, et al. Microporous organic polymers derived microporous carbon supported Pd catalysts for oxygen reduction reaction: Impact of framework and heteroatom[J]. J Phys Chem C, 2016, 120(4): 2187-2197.
    Li Z, Wu D, Liang Y, et al. Facile fabrication of novel highly microporous carbons with superior size-selective adsorption and supercapacitance properties[J]. Nanoscale, 2013, 5(22): 10824-10828.
    Liang Y, Liang F, Zhong H, et al. An advanced carbonaceous porous network for high-performance organic electrolyte supercapacitors[J]. J Mater Chem A, 2013, 1(24): 7000-7005.
    Modak A, Bhaumik A. Porous carbon derived via KOH activation of a hypercrosslinked porous organic polymer for efficient CO2, CH4, H2 adsorptions and high CO2/N2 selectivity[J]. J Solid State Chem, 2015, 232: 157-162.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(796) PDF Downloads(1112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return