LIU Li-le, K. P. Annamalai, TAO You-sheng. A hierarchically porous CuCo2S4/graphene composite as an electrode material for supercapacitors. New Carbon Mater., 2016, 31(3): 336-342.
Citation: LIU Li-le, K. P. Annamalai, TAO You-sheng. A hierarchically porous CuCo2S4/graphene composite as an electrode material for supercapacitors. New Carbon Mater., 2016, 31(3): 336-342.

A hierarchically porous CuCo2S4/graphene composite as an electrode material for supercapacitors

Funds:  National Natural Science Foundation of China (21273236);Science and Technology Planning Projects of Fujian Province of China (2014H2008, 2015I0008);"100 Talents" Program of Chinese Academy of Sciences;"100 Talents" Program of Fujian Province, China.
  • Received Date: 2016-05-08
  • Accepted Date: 2016-06-28
  • Rev Recd Date: 2016-06-12
  • Publish Date: 2016-06-28
  • A CuCo2S4/graphene composite was synthesized using a simple hydrothermal method. The sample was characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption and electrochemical tests. The composite had a hierarchical porous structure with micropores of 0.7-1.2 nm, mesopores of 2-10 nm and a total pore volume of 0.1 cm3·g-1, and the CuCo2S4 had a nano-belt structure. As the electrode of a supercapacitor the composite showed a high specific capacitance of 665 F/g at 7.5 mV/s, and excellent rate capability and cycling stability.
  • loading
  • Chen Y J, Qu B h, Hu L L, et al. High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes[J]. Nanoscale, 2013, 5(20): 9812-9820.
    Xia X H, Tu J P, Zhang Y Q, et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage[J]. ACS Nano, 2012, 6(6): 5531-5538.
    Shim B S, Chen W, Doty C, et al. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes[J]. Nano Letters, 2008, 8(12): 4151-4157.
    Chen L F, Huang Z H, Liang H W, et al. Bacterial-cellulose-derived carbon nanofiber@ MnO2and nitrogen-doped carbon nanofiber electrode materials: An asymmetric supercapacitor with high energy and power density[J]. Advanced Materials, 2013, 25(34): 4746-4752.
    Boukhalfa S, Evanoff K, Y S Gleb. Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes[J]. Energy & Environmental Science, 2012, 5(5): 6872-6879.
    Liu D Q, Wang Q, Qiao L, et al. Preparation of nano-networks of MnO2 shell/Ni current collector core for high-performance supercapacitor electrodes[J]. Journal of Materials Chemistry, 2012, 22(2): 483-487.
    Zhang G Q, Lou X W. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors[J]. Advanced Materials, 2013, 25(7): 976-979.
    Wang S B, Pu J, Tong Y, et al. ZnCo2O4 nanowire arrays grown on nickel foam for high-performance pseudocapacitors[J]. Journal of Materials Chemistry A, 2014, 2(48): 5434-5440.
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
    Pendashteh A, Rahmanifar M S, Richard B, et al. Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors[J]. Chemistry Communications, 2014, 50(16): 1972-1975.
    Zhang Y F, Ma M Z, Yang J, et al. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors[J]. Nanoscale, 2014, 6(16): 9824-9830.
    Lei Z B, Christov N, Zhao X S, et al. Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes[J]. Energy & Environmental Science, 2011, 4(5): 1866-1873.
    Chen Z, Qin Y C, Weng D, et al. Design and synthesis of hierarchical nanowire composites for electrochemical energy storage[J]. Advanced Functional Materials, 2009, 19(21): 3420-3426.
    Chen H, Zhou S X, Wu L M. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8621-8630.
    Chen H, Hu L F, Yan Y, et al. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance[J]. Advanced Energy Materials, 2013, 3(12): 1636-1646.
    Yuan C Z, Wu H B, Xie Y, et al. Mixed transition-metal oxides: Design, synthesis, and energy-related applications[J]. Angewandte Chemie International Edition, 2014, 53(6): 1488-1504.
    Chen H, Hu L F, Chen M, et al. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials[J]. Advanced Functional Materials, 2014, 24(7): 934-942.
    Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1): 1-12.
    Thounthong P, Chunkag V, Sethakul P, et al. Energy management of fuel cell/solar cell/supercapacitor hybrid power source[J]. Journal of Power Sources, 2011, 196(1): 313-324.
    Danks T N, Slade R C T, Varcoe J R. Comparison of PVDF-and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs[J]. Journal of Materials Chemistry, 2002, 12(12): 3371-3373.
    Liu H S, Song C J, Zhang L. A review of anode catalysis in the direct methanol fuel cell[J]. Journal of Power Sources, 2006, 155(2): 95-110.
    Boggs B K, Botte G G. Optimization of Pt-Ir on carbon fiber paper for the electro-oxidation of ammonia in alkaline media[J]. Electrochimica Acta, 2010, 55(19): 5287-5293.
    Jiang H, Zhao T, Ma J, et al. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors[J]. Chemical Communications, 2011, 47(4): 1264-1266.
    Reddy A L M, Shaijumon M M, Gowda S R, et al. Coaxial MnO2/Carbon nanotube array electrodes for high-performance lithium batteries[J]. Nano Letters, 2009, 9(3): 1002-1006.
    Pendashteh A, Rahmanifar M S, Kanerc R B, et al. Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors[J]. Chemical Communications, 2014, 50(16): 1972-1975.
    Lai C H, Lu M Y, Chen L J. Metal sulfide nanostructures: Synthesis, properties and applications in energy conversion and storage[J]. Journal of Materials Chemistry, 2012, 22(1): 19-30.
    Xia X H, Zhu C R, Luo J S, et al. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application[J]. Small, 2014, 10(4): 766-773.
    Xiao J W, Wan L,Yang S L, et al. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber Paper for High-Performance Pseudocapacitors[J]. Nano Letters, 2014, 14(2): 831-838.
    Wang H L, Dai H J. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage[J].Chemical Society Reviews, 2013,42(24): 3088-3113.
    Du W M, Wang Z Y, Zhu Z Q, et al. Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2014, 2(25): 9613-9619.
    Rui X H, Tan H T, Yan Q Y, Nanostructured metal sulfides for energy storage[J]. Nanoscale, 2014,6(17): 9889-9924.
    Gao Y, Mi L W, Wei W T, et al. Double metal ions synergistic effect in hierarchical multiple sulfide microflowers for enhanced supercapacitor performance[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4311-4319.
    Zheng X S, Liu J D, Chen L, et al. Metal sulfides/graphene nanocomposites: An overview of preparation and applications[J]. Recent Patents on Chemical Engineering, 2013, 6(3): 152-160.
    Peng S J, Li L L, Li C C, et al. In situ growth of NiCo2S4nanosheets on graphene for high-performance supercapacitors[J]. Chemcial Communications, 2013, 49(86): 10178-10180.
    Yu X Y, Yu L, Lou X W. Metal sulfide hollow nanostructures for electrochemical energy storage[J]. Advance Energy Material, 2015: 1501333.
    Moosavifard S E, Fanib S, Rahmanianc M. Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors[J]. Chemical Communications, 2016, 52(24): 4517-4520.
    Shen J F, Tang J H, Dong P, et al. Construction of three-Dimensional CuCo2S4/CNT/graphene nanocomposite for high performance supercapacitors[J]. RSC Advances, 2016, 6(16): 13456-13460.
    Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 40(8): 4806-4814.
    Annamalai K P, Gao J P, Liu L L, et al. Nanoporous graphene/single wall carbon nanohorn heterostructures with enhanced capacitance[J]. Journal of Materials Chemistry A, 2015, 3(22): 11740-11744.
    M. Toupin, Brousse T, Belanger D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide[J]. Chemistry of Materials, 2002, 14: 3946-3952.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(503) PDF Downloads(861) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return