NAN Ding, HUANG Zheng-hong, KANG Fei-yu, SHEN Wan-ci. Electrospun N-doped porous carbon nanofiber webs as anodes for lithium-ion batteries. New Carbon Mater., 2016, 31(4): 393-398.
Citation: NAN Ding, HUANG Zheng-hong, KANG Fei-yu, SHEN Wan-ci. Electrospun N-doped porous carbon nanofiber webs as anodes for lithium-ion batteries. New Carbon Mater., 2016, 31(4): 393-398.

Electrospun N-doped porous carbon nanofiber webs as anodes for lithium-ion batteries

Funds:  973 Program of China(2014CB932401);National Natural Science Foundation of China(51232005,51502147);Inner Mongolia Higher School Science and Technology Research Projects of China(NJZY090);Natural Science Foundation of Inner Mongolia(2015BS0510).
  • Received Date: 2016-01-15
  • Accepted Date: 2016-08-29
  • Rev Recd Date: 2016-03-29
  • Publish Date: 2016-08-28
  • Nitrogen-doped porous carbon nanofiber webs (NPCNFs) were prepared from mixtures of polyacrylonitrile and melamine byelectrospinning, followed by oxidative stabilization, carbonization and steam activation. The NPCNFs are free-standing,exhibit an interconnected non-woven nanofibrous morphology and a well-developed microporous structure, and can be used directly as anodes for lithium ion batteries without adding binder or conductive filler. The NPCNF from the mixture with a melamine/polyacrylonitrile mass ratio of 1:3 has a high specific capacity of 856 mAh·g-1 and a satisfactory rate capability. These intriguing characteristics make the NPCNFs promising anode candidates for high-performance lithium ion batteries.
  • loading
  • Guo B, Wang X, Fulvio P F, et al. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries[J]. Advanced Materials, 2011, 23(40):4661-4666.
    Chan K, Young J, Bui N, et al. Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs[J]. Small, 2007, 3(1):91-95.
    Ji L, Lin Z, Medford A J, et al. Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material[J]. Carbon, 2009, 47(14):3346-3354.
    Ji L, Zhang X. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries[J]. Nanotechnology, 2009, 20(15):155705-155711.
    Nan D, Wang J, Huang Z, et al. Highly porous carbon nanofibers from electrospun polyimide/SiO2 hybrids as an improved anode for lithium-ion batteries[J]. Electrochemistry Communications, 2013, 34:52-55.
    Greiner A,Wendorff J H. Electrospinning:A fascinating method for the preparation of ultrathin fibers[J]. Angewandte Chemie International Edition, 2007, 46(30):5670-5703.
    Feng L Z, Isaac P. Mass production of nanofibre assemblies by electrostatic spinning[J]. Polymer International, 2009, 58(4):331-342.
    Wu Y, Fang S, Jiang Y, et al. Effects of doped sulfur on electrochemical performance of carbon anode[J]. Journal of Power Sources, 2002, 108(1):245-249.
    Tran T, Feikert J, Song X, et al. Commercial carbonaceous materials as lithium intercalation anodes[J]. Journal of The Electrochemical Society, 1995, 142(10):3297-3302.
    Wu Y, Fang S, Jiang Y. Carbon anode materials based on melamine resin[J]. J Mater Chem, 1998, 8(10):2223-2227.
    Endo M, Kim C, Karaki T, et al. Anode performance of a Li-ion battery based on graphitized and B-doped milled mesophase pitch-based carbon fibers[J]. Carbon, 1999, 37(4):561-568.
    Kim C, Fujino T, Hayashi T, et al. Structural and electrochemical properties of pristine and B-doped materials for the anode of Li-Ion secondary batteries[J]. Journal of the Electrochemical Society, 2000, 147(4):1265-1270.
    Way B, Dahn J. The effect of boron substitution in carbon on the intercalation of lithium in Lix(BzC1-z)6[J]. Journal of the Electrochemical Society, 1994, 141(4):907-912.
    Bulusheva L G, Okotrub A V, Kurenya A G, et al. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries[J]. Carbon, 2011, 49(12):4013-4023.
    Han P, Yue Y, Zhang L, et al. Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries[J]. Carbon, 2012, 50(3):1355-1362.
    Hu C, Xiao Y, Zhao Y, et al. Highly nitrogen-doped carbon capsules:Scalable preparation and high-performance applications in fuel cells and lithium ion batteries[J]. Nanoscale, 2013, 5(7):2726-2733.
    Huang X, Zhang R, Zhang X, et al. Synthesis of nitrogen-doped carbon microtubes for application in lithium batteries[J]. Scripta Materialia, 2012, 67(12):987-990.
    Li H, Shen L, Zhang X, et al. Nitrogen-doped carbon coated Li4Ti5O12 nanocomposite:Superior anode materials for rechargeable lithium ion batteries[J]. Journal of Power Sources, 2013, 221:122-127.
    Li X, Geng D, Zhang Y, et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries[J]. Electrochemistry Communications, 2011, 13(8):822-825.
    Li X, Liu J, Zhang Y, et al. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application[J]. Journal of Power Sources, 2012, 197:238-245.
    Ma C, Shao X, Cao D. Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries:a first-principles study[J]. Journal of Materials Chemistry, 2012, 22(18):8911-8915.
    Mao Y, Duan H, Xu B, et al. Lithium storage in nitrogen-rich mesoporous carbon materials[J]. Energy & Environmental Science, 2012, 5(7):7950-7955.
    Qie L, Chen W M, Wang Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced materials, 2012, 24(15):2047-2050.
    Reddy A L M, Srivastava A, Gowda S R, et al. Synthesis of nitrogen-doped graphene films For lithium battery application[J]. ACS Nano, 2010, 4(11):6337-6342.
    Shin W H, Jeong H M, Kim B G, et al. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity[J]. Nano Letters, 2012, 12(5):2283-2288.
    Wang H, Zhang C, Liu Z, et al. Nitrogen-doped graphene nanosheets with excellent lithium storage properties[J]. Journal of Materials Chemistry, 2011, 21(14):5430-5434.
    Xifei L, Jian L, Yong Z, et al. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application[J]. Journal of Power Sources, 2012, 197:238-245.
    Yang S, Zhi L, Tang K, et al. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions[J]. Advanced Functional Materials, 2012, 22(17):3634-3640.
    Zhang K, Han P, Gu L, et al. Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2012, 4(2):658-664.
    Morita M, Hanada T, Tsutsumi H, et al. Layered-structure BC2N as a negative electrode matrix for rechargeable lithium batteries[J]. Journal of The Electrochemical Society, 1992, 139(5):1227-1230.
    Kim C, Yang K S, Kojima M, et al. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries[J]. Advanced Functional Materials, 2006, 16(18):2393-2397.
    Han F D, Bai Y J, Liu R, et al. Template-free synthesis of interconnected hollow carbon Nanospheres for high-performance anode material in lithium-ion batteries[J]. Advanced Energy Materials, 2011, 1(5):798-801.
    Kaskhedikar N A, Maier J. Lithium storage in carbon nanostructures[J]. Advanced Materials, 2009, 21(25-26):2664-2680.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(599) PDF Downloads(697) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return