MOU Yan-pu, WANG Cong, ZHAN Liang, LIU Xiang, Wang Yan-li. Synthesis and electrochemical performance of a spherical flower-like MoS2/graphene anode material for lithium ion batteries. New Carbon Mater., 2016, 31(6): 609-614.
Citation: MOU Yan-pu, WANG Cong, ZHAN Liang, LIU Xiang, Wang Yan-li. Synthesis and electrochemical performance of a spherical flower-like MoS2/graphene anode material for lithium ion batteries. New Carbon Mater., 2016, 31(6): 609-614.

Synthesis and electrochemical performance of a spherical flower-like MoS2/graphene anode material for lithium ion batteries

Funds:  National Natural Science Foundation of China(51472086,51002051);Natural Science Foundation of Shanghai City(12ZR1407200).
  • Received Date: 2016-10-01
  • Accepted Date: 2016-12-26
  • Rev Recd Date: 2016-12-03
  • Publish Date: 2016-12-28
  • A MoS2/graphene composite was synthesized at 240℃ by a hydrothermal method using graphene oxide, Na2MoO4 and CS(NH2)2 as the raw materials. Results indicate that the spherical flower-like MoS2 structure was self-assembled by thin MoS2 micrometer size layers and dispersed uniformly on the surface of graphene. The MoS2/graphene composite as an anode material retains a capacity of 735.2 mAh/g after 100 cycles under a current density of 100 mA/g and has a good rate performance (490.3 mAh/g at 400 mA/g and 411.9 mAh/g at 800 mA/g). The excellent electrochemical performance of the composite is attributed to its special structure. The thin MoS2 layers shorten the diffusion and transport paths for Li+ ions and electrons. The abundant mesopores are beneficial for ion diffusion and act as a buffer to inhibit volume changes during charge-discharge. Graphene increases the charge-discharge rate of MoS2 effectively owing to its high conductivity and high surface area.
  • loading
  • Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367.
    TANG Zhi-wei, XU Fei, LIANG Ye-ru, et al. Preparation and electrochemical performance of a hierarchically porous activated carbon aerogel/sulfur cathode for lithium-sulfur batteries[J]. New Carbon Materials, 2015, 30(4):319-326.
    Miki Y, Nakazato D, Ikuta H, et al. Amorphous MoS2 as the cathode of lithium secondary batteries[J]. Journal of Power Sources, 1995, 54(2):508-510.
    Xiao J, Choi D, Cosimbescu L, et al. Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries[J]. Chemistry of Materials, 2010, 22(16):4522-4524.
    Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries:A review[J]. Energy & Environmental Science, 2011, 4:3243-3262.
    Armand M, Murphy D W, Steele B C. Materials for advanced batteries[J]. New York Plenum Press, 1980, 145-147.
    Hwang H, Kim H, Cho J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano letters, 2011, 11(11):4826-4830.
    Du G D, Guo Z P, Wang S Q, et al. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J]. Chemical Communication, 2010, 46(7):1106-1108.
    Guo G H, Hong J H, Cong C J, et al. Molybdenum disulfide synthesized by hydrothermal method as anode for lithium rechargeable batteries[J]. Journal of Materials Science, 2005, 40:2557-2559.
    Chang K, Chen W X. Single-layer MoS2/graphene dispersed in amorphous carbon:towards high electrochemical performances in rechargeable lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(43):17175-17184.
    Chang K, Chen W X, Ma L, et al. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(17):6251-6257.
    Bindumadhavan K, Srivastava S K, Mahanty S. MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries[J]. Chemical Communication, 2013, 49(18):1823-1825.
    Chang K, Chen W X. L-cysteine-assisted synthesis of layered MoS2 graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS Nano, 2011, 5(6):4720-4728.
    Cao X H, Shi Y M, Shi W H, et al. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium ion batteries[J]. Small, 2013, 9(20):3433-3438.
    Wang Z, Chen T, Chen W X, et al. CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(6):2202-2210.
    Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.
    Ding S, Chen J S, Lou X W D. Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties[J]. Chemistry-A European Journal, 2011, 17(47):13142-13145.
    Wang H, Casalongue H S, Liang Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudo capacitor materials[J]. Journal of the American Chemical Society, 2010, 132(21):7472-7477.
    Wang H, Cui L F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. Journal of the American Chemical Society, 2010, 132(40):13978-13980.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(528) PDF Downloads(731) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return