XU Zhao, YOU Hui-hui, ZHANG Lei, YANG Quan-hong. Recent development of polysulfide barriers for Li-S batteries. New Carbon Mater., 2017, 32(2): 97-105.
Citation: XU Zhao, YOU Hui-hui, ZHANG Lei, YANG Quan-hong. Recent development of polysulfide barriers for Li-S batteries. New Carbon Mater., 2017, 32(2): 97-105.

Recent development of polysulfide barriers for Li-S batteries

Funds:  National Natural Science Foundation of China (U1401243, 21406161).
  • Received Date: 2017-01-18
  • Accepted Date: 2017-04-26
  • Rev Recd Date: 2017-03-27
  • Publish Date: 2017-04-28
  • Li-S batteries have attracted great attention for their high theoretical specific capacity (1 675 mAh·g-1) and energy density (2 600 Wh·Kg-1). However, their low conductivity and poor utilization efficiency of sulfur greatly restrict practical applications. Novel polysulfide barriers have been designed and fabricated to overcome the shuttle effect and to improve cycle stability. In this review, the recent development of polysulfide barrier materials for Li-S batteries is introduced, which include carbon materials, metal oxides and conducting polymers. The development of an integrated electrode consisting of a polysulfide barrier and separator could be a hot research topic for Li-S batteries.
  • loading
  • Armand M, Tarascon J. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
    Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
    Gao X, Yang H. Multi-electron reaction materials for high energy density batteries[J]. Energy & Environmental Science, 2010, 3(2): 174-189.
    张 强, 程新兵, 黄佳琦, 等. 碳质材料在锂硫电池中的应用研究进展[J]. 新型炭材料, 2014, 29(4): 241-264. (ZHANG Qiang, CHENG Xin-bing, HUANG Jia-qi, et al. Review of carbon materials for advanced lithium-sulfur batteries[J]. New Carbon Materials, 2014, 29(4): 241-264.)
    Ji X, Nazar L. Advances in Li-S batteries[J]. Journal of Materials Chemistry, 2010, 20(44): 9821-9826.
    Bruce P, Freunberger S, Hardwick L, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature materials, 2012, 11(1): 19-29.
    Su Y, Fu Y, Cochell T, et al. A strategic approach to recharging lithium-sulphur batteries for long cycle life[J]. Nature communications, 2013, 4(1): 2985.
    Li Z, Huang Y, Yuan L, et al. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries[J]. Carbon, 2015, 92: 41-63.
    Zhang C, Lv W, Tao Y, et al. Towards superior volumetric perparation of novel carbon materials for energy storage[J]. Energy Environ Sci, 2015, 8: 1390-1403.
    Manthiram A, Fu Y, Su Y, et al. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134.
    Yin Y, Xin S, Guo Y, et al. Lithium-sulfur Batteries: electrochemistry, materials, and prospects[J]. Angewandte Chemie-international Edition, 2013, 52(50): 13186-13200.
    Mikhaylik Y, Akridge J. Polysulfide shuttle study in the Li/S battery system[J]. Journal of the Electrochemical Society, 2004, 151: 1969-1976.
    Hofmann A, Fronczek D, Bessler W. Mechanistic modeling of polysulfide shuttle and capacity loss in lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 259: 300-310.
    Martin R, Philipp A, Heino S, et al. Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates[J]. Journal of Power Sources, 2014, 259: 289-299.
    Barchasz C, Leprêtre J, Alloin F, et al. New insights into the limiting parameters of the Li/S rechargeable cell[J]. Journal of Power Sources, 2012, 199: 322-330.
    Yan Y, Yin Y, Xin S, et al. High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte[J]. Electrochimica Acta, 2013, 91: 58-61.
    Cheng X, Huang J, Zhang Q, et al. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries[J]. Nano Energy, 2014, 4: 65-72.
    Li G, Li G, Ye S, et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries[J]. Advanced Energy Materials, 2012, 2(10): 1238-1245.
    Ma G, Wen Z, Jin J, et al. Enhancement of long stability of Li-S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode[J]. RSC Advances, 2014, 4(41): 21612-21618.
    Xiao L, Cao Y, Xiao J, et al. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J]. Adv Mater, 2012, 24(9): 1176-1181.
    Xin S, Gu L, Zhao N, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513.
    Zhao S, Li C, Wang W, et al. A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(10): 3334.
    Zhou W, Yu Y, Chen H, et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2013, 135(44): 16736-16743.
    Jia X, Zhang C, Liu J, et al. Evolution of the effect of sulfur confinement in graphene-based porous carbons for use in Li-S batteries[J]. Nanoscale, 2016, 8: 4447-4451.
    Niu S, Lv W, Zhang C, et al. A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3: 20218-20224.
    Niu S, Lv W, Zhang C, et al. One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium-sulfur batteries[J]. Journal of Power sources, 2015, 295: 182-189.
    Zhang C, Liu D, Wang D, et al. A highly dense graphene-sulfur assembly: a promising cathode for Li-S batteries[J]. Nanoscale, 2015, 7: 5592-5597.
    Zhang X, Wang W, Wang A, et al. Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2014, 2(30): 11660-11665.
    Zhang S. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions[J]. Journal of Power Sources, 2013, 231: 153-162.
    Sun X, Wang X, Mayes R, et al. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte[J]. ChemSusChem, 2012, 5(10): 2079-2085.
    Hagen M, Dörfler S, Althues H, et al. Lithium-sulphur batteries-binder free carbon nanotubes electrode examined with various electrolytes[J]. Journal of Power Sources, 2012, 213: 239-248.
    Scheers J, Fantini S, Johansson P. A review of electrolytes for lithium-sulphur batteries[J]. Journal of Power sources, 2014, 267: 770-783.
    Su Y, Manthiram A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chem Commun (Camb), 2012, 48(70): 8817-8819.
    Zhou G, Pei S, Li L, et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Advanced materials, 2014, 26(4): 625-631.
    Manthiram A, Chung S H, Zu C. Lithium-sulfur batteries: progress and prospects[J]. Advanced materials, 2015, 27(12): 1980-2006.
    Huang J Q, Zhang Q, Wei F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects[J]. Energy Storage Materials, 2015, 1: 127-145.
    Zhuang T Z, Huang J Q, Peng H J, et al. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries[J]. Small, 2015.
    Singhal R, Chung S H, Manthiram A, et al. A free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(8): 4530-4538.
    Zhou G, Li L, Wang D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials, 2015, 27(4): 641-647.
    Huang J Q, Zhuang T Z, Zhang Q, et al. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries[J]. ACS nano, 2015, 9(3): 3002-3011.
    Chung S H, Manthiram A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator[J]. The Journal of Physical Chemistry Letters, 2014, 5(11): 1978-1983.
    Chung S H, Manthiram A. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells[J]. ChemSusChem, 2014, 7(6): 1655-1661.
    Su Y, Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nature Communications, 2012, 3: 1166.
    Zeng Q C, Leng X, Wu K H, et al. Electroactive cellulose-supported graphene oxide interlayers for Li-S batteries[J]. Carbon, 2015, 93: 611-619.
    Peng H J, Wang D W, Huang J Q, et al. Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with utilization in lithium-sulfur batteries[J]. Advanced Science, 2016, 3: 1500268.
    Balach J, Jaumann T, Klose M, et al. Mesoporous carbon interlayers with tailored pore volume as polysulfide reservoir for high-energy lithium-sulfur batteries[J]. The Journal of Physical Chemistry C, 2015, 119(9): 4580-4587.
    Balach J, Jaumann T, Klose M, et al. Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries[J]. Advanced Functional Materials, 2015, 25(33): 5285-5291.
    Zu C, Su Y, Fu Y, et al. Improved lithium-sulfur cells with a treated carbon paper interlayer[J]. Physical Chemistry Chemical Physics, 2013, 15(7): 2291-2297.
    Chung S, Manthiram A. A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries[J]. Chemical Communications, 2014, 50(32): 4184-4187.
    Zhang Z A, Wang G C, Lai Y Q, et al. Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium-sulfur batteries[J]. Journal of Power Sources, 2015, 300: 157-163.
    Manthiram A, Chung S H. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Advanced Materials, 2014, 26: 7352-7357.
    Xiao Z, Yang Z, Wang L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Adv Mater, 2015, 27(18): 2891-2898.
    Tao X, Wang J, Ying Z, et al. Strong sulfur binding with conducting magnéli-phase TinO2n-1 nanomaterials for improving lihium-sulfur batteries[J]. Nano letters, 2014, 14(9): 5288-5294.
    Evers S, Yim T, Nazar L. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery[J]. The Journal of Physical Chemistry C, 2012, 116 (37): 19653-19658.
    Hwang J Y, Kim H M, Lee S Y, et al. High-energy, high-rate, lithium-sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer[J]. Advanced Energy Materials, 2016, 6: 1501480.
    Zhang Z, Lai Y, Zhang Z, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J]. Electrochimica Acta, 2014, 129: 55-61.
    Li W, Hicks-Garner J, Wang J, et al. V2O5 polysulfide anion barrier for long-lived Li-S batteries[J]. Chemistry of Materials, 2014, 26(11): 3403-3410.
    Kim K, Park S. Synthesis and high electrochemical performance of polyaniline/MnO2-coated multi-walled carbon nanotube-based hybrid electrodes[J]. Journal of Solid State Electrochemistry, 2012, 16(8): 2751-2758.
    Zhou J, Li R, Fan X, et al. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries[J]. Energy & Environmental Science, 2014, 7(8): 2715-2724.
    Park K, Cho J, Jang J, et al. Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix[J]. Energy & Environmental Science, 2015, 8(8): 2389-2395.
    Li W, Zhang Q, Zheng G, et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance[J]. Nano Lett, 2013, 13(11): 5534-5540.
    Zhang S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions[J]. Journal of Power Sources, 2013, 231: 153-162.
    Ma G, Wen Z, Jin J, et al. Enhanced cycle performance of Li-S battery with a polypyrrole functional interlayer[J]. Journal of Power Sources, 2014, 267: 542-546.
    Chang C, Chung S, Manthiram A. Ultra-lightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li-S batteries with pure sulfur cathodes[J]. Journal of Materials Chemistry A, 2015, 3(37): 18829-18834.
    Ma G, Wen Z, Jin J, et al. Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite[J]. Journal of Power Sources, 2014, 254: 353-359.
    Ma G, Wen Z, Wang Q, et al. Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer[J]. Journal of Power Sources, 2015, 273: 511-516.
    Wang G, Lai Y, Zhang Z, et al. Enhanced rate capability and cycle stability of lithium-sulfur batteries with a bifunctional MCNT@PEG-modified separator[J]. Journal of Materials Chemistry A, 2015, 3: 7139-7144.
    Zhu J D, Chen C, Lu Y, et al. Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries[J]. 2016, 101: 272-280.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(730) PDF Downloads(1152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return