SU Ya-nan, ZHANG Shou-chun, ZHANG Xing-hua, ZHAO Zhen-bo, CHEN Cheng-meng, JING De-qi. Preparation and properties of graphene/carbon fiber/poly(ether ether ketone) composites. New Carbon Mater., 2017, 32(2): 152-159.
Citation: SU Ya-nan, ZHANG Shou-chun, ZHANG Xing-hua, ZHAO Zhen-bo, CHEN Cheng-meng, JING De-qi. Preparation and properties of graphene/carbon fiber/poly(ether ether ketone) composites. New Carbon Mater., 2017, 32(2): 152-159.

Preparation and properties of graphene/carbon fiber/poly(ether ether ketone) composites

Funds:  Natural Science Foundation of Shanxi Province(2015011032); National Natural Science Foundation of China(U1510119); National Defense Innovation Foundation of China(CXJJ-16M127);Youth Innovation Promotion Association Funds for Chinese Academy of Science(2012140).
  • Received Date: 2017-01-26
  • Accepted Date: 2017-04-26
  • Rev Recd Date: 2017-04-12
  • Publish Date: 2017-04-28
  • Graphene/carbon fiber/poly(ether ether ketone) (GR/CF/PEEK) composites were prepared by directly spraying a GR dispersion onto CF/PEEK prepregs, followed by hot-pressing the stacked prepregs. The structure of the prepregs and cross-section of the composites were characterized by SEM. The mechanical, thermal and electrical properties of the composites were measured to evaluate the influence of GR on their performance. Results showed that the addition of 0.1 wt% GR increases the interlaminar shear strength, the flexural strength and flexural modulus of the composites from 57.3 MPa, 1 226.2 MPa and 64.5 GPa to 77.6 MPa, 1 512.3 MPa and 73.6 GPa, respectively. DSC analysis showed that the crystallinity of the composites increased with the GR content. The thermal conductivity and electrical conductivity of the composites were increased by 15.5 and 73.1%, respectively after 0.5 wt% GR was added. The GR/CF/PEEK composites have much better mechanical, thermal and electrical performance than the CF/PEEK composites.
  • loading
  • Lei P, Yapici U, A comparative study on mechanical properties of carbon fiber/PEEK composites[J]. Advanced Composite Materials, 2015, 25(4): 359-374.
    Gao S L, Kim J K. Cooling rate influences in carbon fibre PEEK composites.Part 1. Crystallinity and interface adhesion[J]. Composites: Part A, 2000, 31(6): 517-530.
    Sharma M, Bijwe J, Mitschang P. Wear performance of PEEK-carbon fabric composites with strengthened fiber-matrix interface[J]. Wear, 2011, 271(9-10): 2261-2268.
    Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials[J]. Small, 2010, 6(6): 711-723.
    Tang Y P, Xu Q, Zhang F, et al. Preparation and application of two dimensional carbon materials[J]. New Carbon Materials, 2016, 31(3): 213-231.
    Liang J Z, Du Q, Tang C Y, et al. Tensile properties of graphene nano-platelets reinforced polypropylene composites[J]. Composites: Part B, 2016, 95: 166-171.
    Song P G, Fang Z P, Fu S Y, et al. Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties[J]. Polymer, 2011, 52(18): 4001-4010.
    Zhao Y F, Xiao M, Meng Y Z, et al. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites[J]. Composites Science and Technology, 2007, 67(11-12): 2528-2534.
    Wu H, Drzal L T. Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties[J]. Carbon, 2012, 50(3): 1135-1145.
    Chi Y, Chu J, Chen M F, et al. Directly deposited graphene nanowalls on carbon fiber for improving the interface strength in composites[J]. Applied Physics Letters, 2016, 108(21): 211601.
    Park J K, Do I H, Askeland P, et al. Electrodeposition of exfoliated graphite nanoplatelets onto carbon fibers and properties of their epoxy composites[J]. Composites Science and Technology, 2008, 68(7-8): 1734-1741.
    Chen J, Wu J M, Ge H Y, et al. Reduced graphene oxide deposited carbon fiber reinforced polymer composites for electromagnetic interference shielding[J]. Composites: Part A, 2016, 82: 141-150.
    Qin W Z, Vautard F, Drzal L T, et al. Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase[J]. Composites: Part B, 2015, 69: 335-341.
    Ashori A, Menbari S, Bahrami R. Mechanical and thermo-mechanical properties of short carbon fiber reinforced polypropylene composites using exfoliated graphene nanoplatelets coating[J]. Journal of Industrial and Engineering Chemistry, 2016, 38: 37-42.
    Qin W Z, Vautard F, Drzal L T, et al. Modifying the carbon fiber-epoxy matrix interphase with graphite nanoplatelets[J]. Polymer Composites, 2016, 37(5): 1549-1556.
    Liu Y Z, Li Y F, Yang Y G, et al. Preparation and properties of graphene oxide/carbonfiber/phenolic resin composites[J]. New Carbon Materials, 2012, 27(5): 377-384.
    Chen C M, Zhang Q, Yang M G, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J]. Carbon, 2012, 50(10): 3572-3584.
    Xie W G, Zhao D L, Jing L, et al. Preparation and mechanical properties of graphene reinforced epoxy resin matrix composites [J]. Polymer Materials Science and Engineering, 2012, 28(9): 129-132.
    Bai S Z. Fracture morphology and properties of composites materials[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(7): A377-A382.
    Zeng H M, Feng L. Study on the interface effect and failure mechanism of carbon fiber/nylon66 composites[J]. Engineering Plastics Application, 1983(2): 9-14.
    Khan S U, Kim J K. Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers [J]. Carbon, 2012, 50(14): 5265-5277.
    Díez-Pascual A M, Naffakh M. Tuning the properties of carbon fiber-reinforced poly(phenylene sulphide) laminates via incorporation of inorganic nanoparticles[J]. Polymer, 2012, 53(12): 2369-2378.
    Zhang M Q, Xu J R, Zhang Z Y, et al. Effect of transcrystallinity on tensile behaviour of discontinuous carbon fibre reinforced semicrystalline thermoplastic composites[J]. Polymer, 1996, 37(23): 5151-5158.
    Díez-Pascual A M, Naffakh M, Gómez M A, et al. The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites[J]. Nanotechnology, 2009, 20(31): 14059-14066.
    Shin Y C, Novin E, Kim H S. Electrical and thermal conductivities of carbon fiber composites with high concentrations of carbon nanotubes[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(3): 465-470.
    Nieves C A,Ramos I,Pinto N J, et al. Electron transport mechanisms in polymer-carbon sphere composites[J]. Journal of Applied Physics, 2016, 120(1): 675-682.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(794) PDF Downloads(884) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return