HUANG Hui, SHEN Yong, XIA Yang, LIANG Chu, GAN Yong-ping, TAO Xin-yong, ZHANG Jun, ZHANG Wen-kui. C-S hybrids prepared by electrodeposition and thermal diffusion methods from kapok-based amorphous carbon flakes as the cathode materials of Li-S batteries. New Carbon Mater., 2017, 32(5): 427-433.
Citation: HUANG Hui, SHEN Yong, XIA Yang, LIANG Chu, GAN Yong-ping, TAO Xin-yong, ZHANG Jun, ZHANG Wen-kui. C-S hybrids prepared by electrodeposition and thermal diffusion methods from kapok-based amorphous carbon flakes as the cathode materials of Li-S batteries. New Carbon Mater., 2017, 32(5): 427-433.

C-S hybrids prepared by electrodeposition and thermal diffusion methods from kapok-based amorphous carbon flakes as the cathode materials of Li-S batteries

Funds:  National Natural Science Foundation of China (21403196,51572240,51677170);Natural Science Foundation of Zhejiang Province (LY15B030003,LY16E070004).
  • Received Date: 2017-06-28
  • Accepted Date: 2017-11-13
  • Rev Recd Date: 2017-08-27
  • Publish Date: 2017-10-28
  • Kapok-based carbon nanoflakes (KCNs) were prepared by high-temperature calcination of kapok fibers as the carbon source. Electrodeposition or thermal diffusion were used to load sulfur onto the KCNs to obtain S-C hybrids for use as the cathode materials of Li-S batteries. The effect of the preparation method on the microstructure and electrochemical properties of the hybrid was investigated. It was found that small sulfur particles are evenly distributed on the surface of KCNs by electrodeposition while a sulfur layer is formed by thermal diffusion. The electrodeposited and thermally loaded C-S hybrids respectively deliver initial discharge capacities of 1 199.7 and 714.7 mAh·g-1 at a current density of 100 mA·g-1, which drop to 623.0 and 367.7 mAh·g-1 after 200 cycles. The sulfur particles formed by electrodeposition have a higher utilization rate and stronger chemical bonding to the carbon than the sulfur formed by thermal diffusion, and this decreases the loss of sulfur during cycling.
  • loading
  • Wang H, Yang Y, Liang Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7):2644-2647.
    Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45):18510-18513.
    Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur, cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6):500-506.
    Liang S, Liang C, Xia Y, et al. Facile synthesis of porous Li2S@C composites as cathode materials for lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 306:200-207.
    Ji X, Nazar L F. Advances in Li-S batteries[J]. Journal of Materials Chemistry, 2010, 20(44):9821-9826.
    Zheng G, Yang Y, Cha J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2011, 11(10):4462-4467.
    Tao X Y, Chen X R, Xia Y, et al. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(10):3295-3301.
    Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1):19-29.
    Jayaprakash N, Shen J, Moganty S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie, 2011, 50(26):5904-5908.
    Guo J, Xu Y, Wang C. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries[J]. Nano Letters, 2011, 11(10):4288-4294.
    Cheon S E, Ko K S, Cho J H, et al. Rechargeable lithium sulfur battery[J]. Journal of the Electrochemical Society, 2003, 150(6):A800-A805.
    Zheng W, Liu Y W, Hu X G, et al. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries[J]. Electrochimica Acta, 2006, 51(7):1330-1335.
    Peng H J, Huang J Q, Zhao M Q, et al. Carbon:nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(19):2772-2781.
    Zhao M Q, Liu X F, Zhang Q, et al. Graphene/single-walled carbon nanotube hybrids:one-step catalytic growth and applications for high-rate Li-S batteries[J]. ACS Nano, 2012, 6(12):10759-10769.
    Nan C, Lin Z, Liao H, et al. Durable carbon-coated Li2S core-shell spheres for high performance lithium/sulfur cells[J]. Journal of the American Chemical Society, 2014, 136(12):4659-4663.
    Tao X Y, Zhang J, Xia Y, et al. Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li-S batteries[J]. Journal of Materials Chemistry A, 2014, 2(7):2290-2296.
    Shim J, Striebel K A, Cairns E J. The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance[J]. Journal of the Electrochemical Society, 2002, 149(10):A1321-A1325.
    Ye H, Yin Y X, Xin S, et al. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1(22):6602-6608.
    Li X, Cao Y, Qi W, et al. Optimization of mesoporous carbon structures for lithium-sulfur battery applications[J]. Journal of Materials Chemistry, 2011, 21(41):16603-16610.
    Shamsipur M, Pourmortazavi S M, Roushani M, et al. Novel approach for electrochemical preparation of sulfur nanoparticles[J]. Microchimica Acta, 2011, 173(3):445-451.
    Bura-Nakic E, Róka A, Ciglenecki I, et al. Electrochemical nanogravimetric studies of sulfur/sulfide redox processes on gold surface[J]. Journal of Solid State Electrochemistry, 2009, 13(12):1935-1944.
    Zhang L Y, Huang H, Yin H L, et al. Sulfur synchronously electrodeposited onto exfoliated graphene sheets as cathode material for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(32):16513-16519.
    Lindberg B J, Hamrin K, Johansson G, et al. Molecular spectroscopy by means of ESCA Ⅱ. sulfur compounds. correlation of electron binding energy with structure[J]. Physica Scripta, 2007, 1(5-6):286-298.
    Fechler N, Fellinger T P, Antonietti M. One-pot synthesis of nitrogen-sulfur-co-doped carbons with tunable composition using a simple isothiocyanate ionic liquid[J]. Journal of Materials Chemistry A, 2013, 1(45):14097-14102.
    Wang X, Kim Y G, Drew C, et al. Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors[J]. Nano Letters, 2004, 4(2):331-334.
    Smart R S C, Skinner W M, Gerson A R. XPS of sulphide mineral surfaces:metal-deficient, polysulphides, defects and elemental sulphur[J]. Surface and Interface Analysis, 1999, 28(1):101-105.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(334) PDF Downloads(361) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return