ZHANG Qiu-hong, ZUO Song-lin, WEI Xin-yu, WANG Yong-fang. H3PO4 activated carbons as the electrode materials of supercapacitors using an ionic liquid electrolyte. New Carbon Mater., 2018, 33(1): 61-70.
Citation: ZHANG Qiu-hong, ZUO Song-lin, WEI Xin-yu, WANG Yong-fang. H3PO4 activated carbons as the electrode materials of supercapacitors using an ionic liquid electrolyte. New Carbon Mater., 2018, 33(1): 61-70.

H3PO4 activated carbons as the electrode materials of supercapacitors using an ionic liquid electrolyte

Funds:  Special Fund for Forest Scientific Research in the Public Welfare(201404611);Doctoral Supervisor Foundation from Ministry of Education Doctor Station(20133204110007).
  • Received Date: 2017-06-25
  • Accepted Date: 2018-02-11
  • Rev Recd Date: 2017-10-15
  • Publish Date: 2018-02-28
  • H3PO4-activated carbons were prepared from Chinese fir sawdust, and their pore structure, surface chemistry and morphology were characterized by nitrogen adsorption, SEM and XPS. Their electrochemical performance as electrode materials for supercapacitors using[BMIM] [PF6] as the electrolyte was investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. Results indicate that H3PO4 activation at 800 to 950℃ produces highly developed mesopores with a volume percentage as high as 66% of the total porosity. The carbon prepared at a H3PO4 to sawdust mass ratio of 3:1 has a specific capacitance of 162 F/g and delivers an energy density of 22.5 Wh/kg at 0.5 A/g. The specific capacitance remains at 86% after 5 000 cycles at 5 A/g, suggesting good cycling stability and rate capability. H3PO4 activation is an effective method to prepare activated carbons for use in ionic liquid-based supercapacitors.
  • loading
  • Mastragostino M, Soavi F. Strategies for high-performance supercapacitors for HEV[J]. Journal of Power Source, 2007, 174(1):89-93.
    Xu B, Wu F, Chen S, et al. High-capacitance carbon electrode prepared by PVDC carbonization for aqueous EDLCs[J]. Electrochimica Acta, 2009, 54(8):2185-2189.
    Xu B, Wu F, Chen R J, et al. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte[J]. Journal of Power Sources, 2010, 195(7):2118-2124.
    Appetechi G B, Montanino M, Carewska M, et al. Chemical-physical properties of bis(perfluoroalkylsulfonyl) imide-based ionic liquids[J]. Electrochimica Acta, 2011, 56(3):1300-1307.
    Lu W, Qu L T, Henry K, et al. High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes[J]. Journal of Powers Sources, 2009, 189(2):1270-1277.
    Yan Y F, Cheng Q L, Wang G C, et al. Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application[J]. Journal of Power Sources, 2011, 196(18):7835-7840.
    Hwang S W, Hyun S H. Capacitance control of carbon aerogel electrodes[J]. Journal of Non-Crystalline Solids, 2004, 347(347):238-245.
    Liu H T, Zhu G Y. The electrochemical capacitance of nanoporous carbons in aqueous and ionic liquids[J]. Journal of Power Sources, 2007, 171(171):1054-1061.
    Chmiola J, Yushin G, Dash R K, et al. Double-layer capacitance of carbide derived carbons in sulfuric acid[J]. Electrochemical and Solid State Letters, 2005, 8(7):A357-A360.
    K L Van, T T L Thi. Activation carbon derived from ice husk by NaOH activation and its appilication in supercapacitor[J]. Progress in Natural Science:Materrials International, 2014, 24(3):191-198.
    Li Y T, Pi Y T, Lu L M, et al. Hierarchical porous active carbon from fallen leaves by synergy of K2CO3 and their supercapacitor performance[J]. Journal of Power Sources, 2015, 299:519-528.
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7:845-854.
    Jagtoyen M, Derbyshire F. Some consideration of the origins of porosity in carbon from chemically activated wood[J]. Carbon, 1993, 31(7):1185-1192.
    Molina-Sabio M, Rodríguez-Reinoso F, Caturla F, et al. Porosity in granular carbons activated with phosphoric acid[J]. Carbon, 1995, 33(8):1105-1113.
    Zuo S L, Liu J L, Yang J X, et al. Effects of the crystallinity of lignocellulosic material on the porosity of phosphoric acid-activated carbon[J]. Carbon, 2009, 47(15):3578-3580.
    Molina-Sabio M, Caturla F, Rodríguez-Reinoso F. Influence of the atmosphere used in the carbonization of phosphoric acid impregnated peach stones[J]. Carbon, 1995, 33(8):1180-1182.
    Zuo S L, Yang J X, Liu J L. Effect of the heating history of impregnated lignocellulosic material on pore development during phosphoric acid activation[J]. Carbon, 2010, 48(11):3293-3295.
    Seredych M, Hulicova-Jurcakova D, Gao Q L, et al. Surface functional groups of carbons and the effects of their chemical character,density and accessibility to ions on electrochemical performance[J]. Carbon, 2008, 46(11):1475-1488.
    Huang P L, Luo X, Peng Y Y, et al. Ionic liquid electrolytes with various constituent ions for graphere-based supercapacitors[J]. Electrochimica Acta, 2015, 161:371-377.
    Li T, Jin B K. Electrochemical redox of benzoquinone in ionic liquids[J]. Chemical Journal of Chinese University, 2014, 35(4):847-852.
    Yan X D, Liu Y, Fan X R, et al. Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors[J]. Jounal of Power Sources, 2014, 248(10):745-751.
    Puziy A M, Poddubnaya O I, Martínez-Alonso A, et al. Oxygen and phosphorus enriched carbons from lignocellulosic material[J]. Carbon, 2007, 45(10):1941-1950.
    Ortega P F R, Trigueiro J P C, Silva G G, et al. Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2 PVDF and imidazolium ionic liquid[J]. Electrochimical Acta, 2015, 188:809-817.
    Liu H T, Zhu G Y. The electrochemical capacitance of nanoporous carbons in aqueous and ionic liquids[J]. Journal of Powers Sources, 2007, 171(171):1054-1061.
    Sathyamoorthi S, Suryanarayanan V, Velayutham D. Electrochemical exfoliation and in situ carboxylic functionalization of graphite in non-fluoro ionic liquid for supercapacitor application[J]. Journal of Solid State Electrochemical, 2014, 18(10):2789-2796.
    He X J, Zhang N, Shao X L, et al. A layered-template-nanospace-confinement strategy for production of corrugated grapheme nanosheets from petroleum pitch for supercapacitors[J]. Chemical Engineering Journal, 2016, 297:121-127.
    Pandey G P, Rastogi A C. Graphere-based all-solid-state supercapacitor with ionic liquid gel polymer electrolyte[J]. Materials Research Society Proceeding, 2012, 1440.
    Oh I, Kim M, Kim J. Carbon-coated Si/MnO2 nanoneedle composites with optimum carbon layer activation for supercapacitor spplications[J]. Chemical Engineering Journal, 2015, 273:82-91.
    Li H Q, Liu R L, Zhao D Y, et al. Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly[J]. Carbon, 2007, 45(13):2628-2635.
    Fu C P, Kuang Y F, Huang Z Y, et al. Supercapacitor based on grapheme and ionic liquid electrolyte[J]. Journal of Solid State Electrochemical, 2011, 15(11-12):2581-2585.
    Zhao X C, Zhang Q, Chen C M, et al. Aromatic sulfide,sulfoxide,and sulfone mesoporous carbon monolith for use in superapacitor[J]. Carbon, 2012, 1(4):624-630.
    Gu W T, Sevilla M, Magasinski A, et al. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors:A case study for pseudocapacitance detection[J]. Energy & Environmental Science, 2013, 6(8):2465-2476.
    Yoo H D, Jang J H, Ji H R, et al. Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitor[J]. Journal of Power Sources, 2014, 267:411-420.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(640) PDF Downloads(613) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return