CHEN Long, SUN Xiao-gang, QIU Zhi-wen, CAI Man-yuan. Fluorinated multiwall carbon nanotubes for high rate lithium ion primary batteries. New Carbon Mater., 2018, 33(4): 324-332.
Citation: CHEN Long, SUN Xiao-gang, QIU Zhi-wen, CAI Man-yuan. Fluorinated multiwall carbon nanotubes for high rate lithium ion primary batteries. New Carbon Mater., 2018, 33(4): 324-332.

Fluorinated multiwall carbon nanotubes for high rate lithium ion primary batteries

Funds:  Jiangxi Education Fund of China (KJLD13006); Jiangxi Scientific Fund of China (20142BBE50071).
  • Received Date: 2018-04-28
  • Accepted Date: 2018-08-30
  • Rev Recd Date: 2018-07-29
  • Publish Date: 2018-08-28
  • Fluorinated graphite (F-graphite) and multiwall carbon nanotubes (F-MWCNTs) were synthesized by direct fluorination with fluorine gas and used as the cathode materials of lithium primary batteries. Their microstructures were characterized by SEM, TEM, XRD and XPS. Results show that the F-MWCNTs have a core-shell structure with the outer layers fluorinated while the inner ones retain their pristine graphitized structure. A F-MWCNT electrode exhibited a higher discharge capacity and a higher discharge plateau than a F-graphite electrode at the same C rates. The discharge capacities of the F-MWCNT and F-graphite electrodes reached 822 and 786.1 mAh/g at 0.05 C, respectively. The corresponding values reached 375.4 and 283.7 mAh/g at 2 C, indicating an excellent rate performance for the former.
  • loading
  • Zhang S S, Foster D, Read J. Carbothermal treatment for the improved discharge pe-rformance of primary Li/CFx, battery[J]. Journal of Power Sources, 2009, 191(2):648-652.
    Zhang S S, Foster D, Wolfenstine J, et al. Electrochemical characteristic and dischar-ge mechanism of a primary Li/CFx cell[J]. Journal of Power Sources, 2009, 187(1):233-237.
    韩秀栋. 氟化石墨/导电聚合物复合材料的制备及其电化学性能研究[D]. 天津:天津大学, 2012(HAN Xiu-dong. Preparation and Electrochemical Properties of Graphite Fluoride/C-onductive Polymer Composites[D]. Tianjin:Tianjin University.)
    Rangasamy E, Li J, Sahu G, et al. Pushing the theoretical limit of Li-CF(x) batteries:a tale of bifunctional electrolyte[J]. Journal of the American Chemical Society, 2014, 136(19):6874-6877.
    Yazami R, Ozawa Y, Shu M, et al. The Kinetics of sub-fluorinated carbon fluoride cathodes for lithium batteries[J]. Ecs Transactions, 2007, 3(36).
    Yazami R, Hamwi A, Guérin K, et al. Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries[J]. Electrochemistry Communicatio ns, 2007, 9(7):1850-1855.
    Zhang S S, Foster D, Read J. A low temperature electrolyte for primary Li/CFx batt-eries[J]. Journal of Power Sources, 2009, 188(2):532-537.
    Zhang S S, Foster D, Read J. Enhancement of discharge performance of Li/CFx cell by thermal treatment of CFx cathode material[J]. Journal of Power Sources, 2009, 188(2):601-605.
    Yazami R, Hamwi A, Guérin K, et al. Fluorinated carbon nanofibres for high energy-and high power densities primary lithium batteries[J]. Electrochemistry Communications, 2007, 9(7):1850-1855.
    Gupta V, Nakajima T, Ohzawa Y, et al. A study on the formation mechanism of gr-aphite fluorides by Raman spectroscopy[J]. Journal of Fluorine Chemistry, 2003, 120(2):143-150.
    Pang C, Ding F, Sun W, et al. A novel dimethyl sulfoxide/1,3-dioxolane based elect-rolyte for lithium/carbon fluorides batteries with a high discharge voltage plateau[J]. Electrochimica Acta, 2015, 174:230-237.
    Nagasubramanian G, Sanchez B. A new chemical approach to improving discharge capacity of Li/(CFx)n, cells[J]. Journal of Power Sources, 2007, 165(2):630-634.
    Lam P, Yazami R. Physical characteristics and rate performance of (CFx)n (0.33 x<0.66) in lithium batteries[J]. Journal of Power Sources, 2006, 153(2):354-359.
    Li Y. The improved discharge performance of Li/CFx batteries by using multi-walled carbon nanotubes as conductive additive[J]. Journal of Power Sources, 2011, 196(196):2246-2250.
    Hany P, Yazami R, Hamwi A. Low-temperature carbon fluoride for high power den-sity lithium primary batteries[J]. Journal of Power Sources, 1997, 68(2):708-710.
    Chong Y B, Ohara H. Modification of carbon fiber surfaces by direct fluorination[J]. Journal of Fluorine Chemistry, 1992, 57(1-3):169-175.
    Mickelson E T, Huffman C B, Rinzler A G, et al. Fluorination of single-wall carbo-n nanotubes. Chem Phys Lett 296:188[J]. Chemical Physics Letters, 1998, 296(1-2):188-194.
    李瑀, 陈彦芳, 冯奕钰,等. 氟化碳纳米管的制备方法及相关性质研究进展[J]. 中国科学:技术科学, 2010(7):727-736. (LI Yu, CHEN Yan-fang, FENG Yi-yu, et al. Progress of synthesizing methods and propertie of fluorinated carbon nanotubes[J]. Science China Press, 2010(7):727-736.)
    Zhang S S, Foster D, Read J. Carbothermal treatment for the improved discharge p-erformance of primary Li/CFx, battery[J]. Journal of Power Sources, 2009, 191(2):648-652.
    Yanyan Tian, Hongjun Yue, Zhengliang Gong, et al. Enhanced electrochemical performance of fluorinanted carbon cathode for Li-O2 primary batteries[J]. Electrochimica Acta 2013, 90:186-193.
    Jayasinghe R, Thapa A K, Dharmasena R R, et al. Optimization of multi-walled carbon Nanotube based CFx, electrodes for improved primary and secondary battery performances[J]. Journal of Power Sources, 2014, 253(5):404-411.
    卢振明, 赵东林, 刘云芳,等. 石墨化处理对碳纳米管结构的影响[J]. 材料热处理学报, 2005, 26(6):9-11. (LU zhen-ming, ZHAO Dong-lin, LIU Yun-fang, et al. The influence of graphitization on the structure of carbon nanotubes[j]. Transaction of Materials and heat treatment, 2005, 26(6):9-11.)
    张琳琳, 许钫钫, 冯景伟, 等. 石墨化对碳纳米管结构与电学性能的影响[J]. 无机材料学报, 2009, 24(3):535-538. (ZHANG Lin-lin, XU Fang-fang, FENG Jing-wei, et al. Effect of graphitization on the sturctures and conducting property of carbon nanotubes[J]. Journal of Inorgan Materials, 2009, 24(3):535-538.)
    王海帆, 魏伟, 秦磊, 等. 碳纳米管的微观结构调节对锂空气电池电化学行为的影响[J]. 新型炭材料, 2016, 31(3):307-314. (WAN Hai-fan, WEI Wei, QING Lei, et al. Influrence of the KOH activation of car-bon nanotubes on their electrochemical behavior in lithium-air batteries[J]. New Carbon Materials, 2016,31(3):307-314.)
    Yang C, Chen C, Pan Y, et al. Flexible highly specific capacitance aerogel electrod-esbased on cellulose nanofibers, carbon nanotubes and polyaniline[J]. Electrochimica Acta, 2015, 182:264-271.
    Jayasinghe R, Thapa A K, Dharmasena R R, et al. Optimization of multi-walled carbon nanotube based CFx electrodes for improved primary and secondary battery performances[J]. Journal of Power Sources, 2014, 253(5):404-411.
    Tao H, Mukoyama D, Nara H, et al. Electrochemical impedance spectroscopy analy-sisfor lithium-ion battery using Li4Ti5O12 anode[J]. Journal of Power Sources, 2013, 222(2):442-447.
    庄全超, 徐守冬, 邱祥云, 等. 锂离子电池的电化学阻抗谱分析[J]. 化学进展, 2010, 22(6):1044-1057. (ZHUANG Quan-chao, XU Shou-dong, QIU Xiangyun, et al. Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Progress in Chemistry, 2010, 22(6):1044-1057.)
    Li X, Kang F, Bai X, et al. A novel network composite cathode of LiFePO/multiw-alled carbon nanotubes with high rate capability for lithium ion batteries[J]. Electrochemistry Communications, 2007, 9(4):663-666.
    Li X, Kang F, Shen W. Multiwalled carbon nanotubes as a conducting additive in a LiNi0.7Co0.3O2, cathode for rechargeable lithium batteries[J]. Carbon, 2006, 44(7):1334-1336.
    Li X, Kang F, Shen W. A comparative investigation on multiwalled carbon nanotub-es and carbon black as conducting additive in LiNi0.7Co0.3O2[J]. Electrochemical and Solid-State Letters, 2006, 9(3).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(511) PDF Downloads(182) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return