HAN Jing-quan, LU Kai-yue, YUE Yi-ying, MEI Chang-tong, WANG Hui-xiang, YAN Peng-bin, XU Xin-wu. Synthesis and electrochemical performance of flexible cellulose nanofiber-carbon nanotube/natural rubber composite elastomers as supercapacitor electrodes. New Carbon Mater., 2018, 33(4): 341-350.
Citation: HAN Jing-quan, LU Kai-yue, YUE Yi-ying, MEI Chang-tong, WANG Hui-xiang, YAN Peng-bin, XU Xin-wu. Synthesis and electrochemical performance of flexible cellulose nanofiber-carbon nanotube/natural rubber composite elastomers as supercapacitor electrodes. New Carbon Mater., 2018, 33(4): 341-350.

Synthesis and electrochemical performance of flexible cellulose nanofiber-carbon nanotube/natural rubber composite elastomers as supercapacitor electrodes

Funds:  National Natural Science Foundation of China (31770609);Ninth China Special Postdoctoral Science Foundation (2016T90466);Natural Science Research Project of Jiangsu Province (17KJB220007);333 Project of Jiangsu Province (2016);Qing Lan Project of Jiangsu Province (2016);Key Research and Development Program of Zhe-jiang Province (2017C01117);Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD);Analysis and Test Center of Nanjing Forestry University.
  • Received Date: 2018-04-03
  • Accepted Date: 2018-08-30
  • Rev Recd Date: 2018-07-18
  • Publish Date: 2018-08-28
  • High strength, flexible and conductive composite elastomers for use as supercapacitor electrodes were synthesized using cellulose nanofibers (CNFs) and carbon nanotubes (CNTs) as the fillers, and natural rubber (NR) as the elastomer. An aqueous suspension of CNFs and CNTs was added to a natural rubber aqueous emulsion containing sulfur and a vulcanization accelerator, and the mixture was homogenized at a high-pressure, coprecipitated with a 1 M H2SO4 solution and vulcanized to obtain the composite elastomer. The microstructure, mechanical properties, electrical conductivity and electrochemical performance of the CNF-CNT/NR elastomers were investigated. Results showed that CNFs significantly improved the dispersion of CNTs in the aqueous suspension, leading to homogenous composite elastomers. The tensile strength and elastic modulus were significantly improved by adding CNFs. When the contents of CNFs and CNTs were 3 and 10 parts per 100 NR by weight, the tensile strength and elastic modulus of the composite reached maximum values of 6.44±0.32 and 8.77±0.48 MPa, respectively, and it was highly stretchable and flexible with a stable electrical conductivity of 1.78±0.86 S/m after stretching, bending and folding. It had a specific capacitance of 107 F/g at a current density of 0.3 A/g and retained 83% of the initial value at 1.0 A/g after cycling for 1200 times. This novel flexible, stretchable and conductive soft elastomer is useful in flexible electronic devices.
  • loading
  • Russo A, Ahn B Y, Adams J J, et al. Pen-on-paper flexible electronics[J]. Advanced materials, 2011, 23(30):3426-3430.
    Vikulov S, Di Stasio F, Ceseracciu L, et al. Fully solution-processed conductive films based on colloidal copper selenide nanosheets for flexible electronics[J]. Advanced Functional Materials, 2016, 26(21):3670-3677.
    Tian M, Ma Q, Li X, et al. High performance dielectric composites by latex compounding of graphene oxide-encapsulated carbon nanosphere hybrids with XNBR[J]. Journal of Materials Chemistry A, 2014, 2(29):11144-11154.
    Jia L C, Li Y K, Yan D X. Flexible and efficient electromagnetic interference shielding materials from ground tire rubber[J]. Carbon, 2017, 121:267-273.
    Ramuz M, Tee B C K, Tok J B H, et al. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics[J]. Advanced Materials, 2012, 24(24):3223-3227.
    Dong B, Wu S, Zhang L, et al. High performance natural rubber composites with well-organized interconnected graphene networks for strain-sensing application[J]. Industrial & Engineering Chemistry Research, 2016, 55(17):4919-4929.
    Additives N. Reinforcement of natural rubber with bacterial cellulose via a latex aqueous microdispersion process[J]. Journal of Nanomaterials, 2017(4):1-9.
    焦琛, 张卫珂, 苏方远, 等. 超级电容器电极材料与电解液的研究进展[J]. 新型炭材料, 2017, 32(2):106-115. (JIAO Chen, ZHANG Wei-ke, SU Fang-yuan, et al. Research progress on electrode materials and electrolytes for supercapacitors[J]. New Carbon Materials, 2017, 32(2):106-115.)
    Jose T, Moni G, Salini S, et al. Multifunctional multi-walled carbon nanotube reinforced natural rubber nanocomposites[J]. Industrial Crops and Products, 2017, 105:63-73.
    Sagar S, Iqbal N, Maqsood A, et al. MWCNTS incorporated natural rubber composites:thermal insulation, phase transition and mechanical properties[J]. International Journal of Engineering and Technology, 2014, 6(3):168.
    Sikong L, Kooptarnond K, Khangkhamano M, et al. Superior properties of natural rubber enhanced by multiwall-carbon nanotubes/nanoclay hybrid[J]. Digest Journal of Nanomaterials and Biostructures, 2015, 10(3):1067-U110.
    Selvan N T, Eshwaran S, Das A, et al. Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications[J]. Sensors and Actuators A:Physical, 2016, 239:102-113.
    Nakaramontri Y, Kummerlöwe C, Nakason C, et al. The effect of surface functionalization of carbon nanotubes on properties of natural rubber/carbon nanotube composites[J]. Polymer Composites, 2015, 36(11):2113-2122.
    Subramaniam K, Das A, Stöckelhuber K W, et al. Elastomer composites based on carbon nanotubes and ionic liquid[J]. Rubber Chemistry & Technology, 2013, 86(3):367-400.
    Ma P C, Tang B Z, Kim J K. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites[J]. Carbon, 2008, 46(11):1497-1505.
    Dong B, Zhang L, Wu Y. Highly conductive natural rubber-graphene hybrid films prepared by solution casting and in situ reduction for solvent-sensing application[J]. Journal of materials science, 2016, 51(23):10561-10573.
    Khalil H A, Bhat A, Yusra A I. Green composites from sustainable cellulose nanofibrils:A review[J]. Carbohydrate Polymers, 2012, 87(2):963-979.
    Leung A C, Hrapovic S, Lam E, et al. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure[J]. Small, 2011, 7(3):302-305.
    Corrêa A C, De Morais Teixeira E, Pessan L A, et al. Cellulose nanofibers from curaua fibers[J]. Cellulose, 2010, 17(6):1183-1192.
    Bendahou A, Kaddami H, Dufresne A. Investigation on the effect of cellulosic nanoparticles' morphology on the properties of natural rubber based nanocomposites[J]. European Polymer Journal, 2010, 46(4):609-620.
    Han J, Zhou C, Wu Y, et al. Self-assembling behavior of cellulose nanoparticles during freeze-drying:effect of suspension concentration, particle size, crystal structure, and surface charge[J]. Biomacromolecules, 2013, 14(5):1529-1540.
    Heydari H, Gholivand M B. An all-solid-state asymmetric device based on a polyaniline hydrogel for a high energy flexible supercapacitor[J]. New Journal of Chemistry, 2017, 41(1):237-244.
    Hamedi M M, Hajian A, Fall A B, et al. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes[J]. Acs Nano, 2014, 8(3):2467-76.
    诸颖, 李文新. 碳纳米管的细胞毒性[J]. 中国科学, 2008, (8):677-684.
    隋刚, 梁吉, 朱跃峰, 等. 碳纳米管/天然橡胶复合材料的红外光谱和DSC分析[J]. 高技术通讯, 2004, 14(8):41-46. (Sui Gang, Liang Ji, Zhu Yue-feng, et al. The infrared spectrum and DSC analyses on natural rubber cmposites filled with carbon nanotubes[J]. Chinese High Technology Letters, 2004, 14(8):41-46.)
    于海涛. 碳纳米管的结构特性及界面强化对天然橡胶复合材料性能的影响研究[D]. 北京化工大学, 2013. (YU Hai-tao. The property influence to natural rubber composites of the structural characteristic of carbon nanotubes and interfacial enhancements[D]. Beijing University of Chemical Technology, 2013.)
    Le H H, Abhijeet S, Ilisch S, et al. The role of linked phospholipids in the rubber-filler interaction in carbon nanotube (CNT) filled natural rubber (NR) composites[J]. Polymer, 2014, 55(18):4738-4747.
    Lauret J-S, Voisin C, Cassabois G, et al. Ultrafast carrier dynamics in single-wall carbon nanotubes[J]. Physical review letters, 2003, 90(5):057404.
    Jiang L, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes[J]. Journal of colloid and interface science, 2003, 260(1):89-94.
    Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites[J]. Carbohydrate polymers, 2016, 137:174-183.
    Cao J, Zhang X, Wu X, et al. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications[J]. Carbohydrate Polymers, 2016, 140:88-95.
    Zhou Y, Fan M, Chen L, et al. Lignocellulosic fibre mediated rubber composites:An overview[J]. Composites Part B, 2015, 76:180-191.
    Bras J, Hassan M L, Bruzesse C, et al. Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites[J]. Industrial Crops & Products, 2010, 32(3):627-633.
    Yang C, Chen C, Pan Y, et al. Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline[J]. Electrochimica Acta, 2015, 182:264-271.
    Cheng Q, Tang J, Shinya N, et al. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density[J]. Journal of Power Sources, 2013, 241:423-428.
    Zhang Y, Liu C, Wen B, et al. Preparation and electrochemical properties of nitrogen-doped multi-walled carbon nanotubes[J]. Materials letters, 2011, 65(1):49-52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(1200) PDF Downloads(290) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return