ZHANG Chen, TANG Quan-jun, TAO Ying, WU Hong-bing, LING Guo-wei, YANG Quan-hong. Functional carbon materials in marine science and technology. New Carbon Mater., 2018, 33(5): 385-391.
Citation: ZHANG Chen, TANG Quan-jun, TAO Ying, WU Hong-bing, LING Guo-wei, YANG Quan-hong. Functional carbon materials in marine science and technology. New Carbon Mater., 2018, 33(5): 385-391.

Functional carbon materials in marine science and technology

Funds:  National Natural Science Foundation of China (51602220, U1710109).
  • Received Date: 2018-08-01
  • Accepted Date: 2018-11-01
  • Rev Recd Date: 2018-09-29
  • Publish Date: 2018-10-28
  • China's marine strategy has become one of the most important national strategies for our future development. Our knowledge of the oceans is still limited. Owing to the extreme physiochemical environment, advanced functional materials are highly required in marine exploration, transportation, construction, national defense and equipment, et al. Carbon materials, which have been widely used in many important fields such as aerospace, are good candidates for use in marine science and technology. In this review, such use is systematically highlighted, particularly in some emerging fields including the treatment of oil spills, anti-corrosion, anti-fouling, structural materials for offshore facilities and seawater purification. The roles, mechanisms and effects of carbon materials are comprehensively discussed, and some promising applications are also presented for their use in marine energy storage, desalination, coatings and other fields, both from the academic and industrial requirements.
  • loading
  • 尹衍生, 黄翔, 董丽华. 海洋工程材料学[M]. 北京:科学出版社, 2008. (Yin Y S, Huang X, Dong L H. Marine Engineering Materials[M]. Beijing:Science Press, 2008.)
    Inagaki M, Kang F Y. Carbon Materials and Engineering-from Fundamentals to Applications[M].Tsinghua University Press, 2006.
    Hossain M K, Chowdhury M M R, Imran K A, et al. Effect of low velocity impact responses on durability of conventional and nanophased CFRP composites exposed to seawater[J]. Polymer Degradation and Stability, 2014, 99:180-189.
    Valenza A, Fiore V, Di Bella G. Effect of UD carbon on the specific mechanical properties of glass mat composites for marine applications[J]. Journal of Composite Materials, 2010, 44(11):1351.
    于礼玮, 曹维宇. 碳纤维复合材料在海洋中的应用[J]. 化工新型材料, 2016, 44(8):4-6. (Yu L W, Cao W Y. Application of carbon fiber composite in marine area[J]. New Chemical Materials, 2016, 44(8):4-6.)
    唐红艳, 王继辉, 徐鹏遥. 复合材料在海军舰艇上的国外应用现状及进展[J]. 船舶, 2006, 19(2):6-11. (Tang H Y, Wang J H, Xu P Y. Worldwide application and development of compound material in naval ships[J]. SHIP & BOAT, 2006, 19(2):6-11.)
    Sun X S, Chen Y, Tan V B C, et al. Homogenization and stress analysis of multilayered composite offshore production risers[J]. Journal of Applied Mechanics, 2014, 81(3):1-11.
    易明. 碳纤维复合材料在深海油气开发中的应用[J]. 新材料产业, 2013, 11:31-36. (Yi M. Application of carbon fiber composite materials in deep-sea oil and gas development[J]. Advanced Materials Industry, 2013, 11:31-36.)
    罗永康, 李炜. 碳纤维复合材料在风力发电机叶片中的应用[J]. 电网与清洁能源, 2008, 24(5):53-57. (Luo Y K, Li Y. Application of carbon fiber reinforced composites in wind turbine blade[J]. Power System and Clean Energy, 2008, 24(5):53-57.)
    Annunciado T R, Sydenstricker T H D, Amico S C. Experimental investigation of various vegetable fibers as sorbent materials for oil spills[J]. Marine Pollution Bulletin, 2005, 50:1340-1346.
    Radeti'c M M, Joci'c D M, Iovanti'c P M, et al. Recycled wool-based nonwoven material as an oil sorbent[J]. Environmental Science and Technology, 2003, 37:1008-1012.
    Xu M Y, Wang G, Zeng Z X, et al. Diverse wettability of superoleophilicity and superoleophobicity for oil spill cleanup and recycling[J]. Applied Surface Science, 2017, 426:1158-1166.
    Singh E, Chen Z P, Housmand F, et al. Superhydrophobic Graphene Foams[J]. Small, 2013, 9(1):75-80.
    Bi H C, Xie X, Yin K B, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents[J]. Advanced Functional Materials, 2012, 22(21):4421-4425.
    Niu Z Q, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Advanced Materials, 2012, 24(30):4144-4150.
    Dong X C, Chen J, Ma Y W, et al. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J]. Chemical Communications, 2012, 48:10660-10662.
    Zhao Y, Hu C G, Hu Y, et al. A versatile, ultralight, nitrogen-doped graphene framework[J]. Angewandte Chemie-International Edition, 2012, 51(45):11371-11375.
    Sun H Y, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18):2554-2560.
    Hu H, Zhao Z B, Gogotsi Y, et al. Compressible carbon nanotube-graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption[J]. Environmental Science & Technology Letters, 2014, 1(3):214-220.
    Ge J, Shi L A, Wang Y C, et al. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill[J]. Nature Nanotechnology, 2017, 12:434-440.
    李增新, 王彤, 孟韵. 膨胀石墨在环境污染治理中的应用[J]. 环境工程学报, 2007, 2(1):69-72. (Li Z X, Wang T, Meng Y, et al. Application of expanded graphite in treatment of environmental pollution[J]. Chinese Journal of Environmental Engineering, 2007, 2(1):69-72.)
    王宏喜, 王宏霞, 薛丽. 关于膨胀石墨吸油性能的研究[J]. 炭素技术, 2004, 5(23):21-23. (Wang H X, Wang H X, Xue L. Study of adsorption of industrial by expanded graphite[J]. Carbon Techniques, 2004, 5(23):21-23.)
    申青峰, 赵景联, 鲁晓雯. 膨胀石墨吸附剂的制备及其吸油性能研究[J]. 工业水处理, 2010, 30(8):57-60. (Shen Q F, Zhao J L, Lu X W, et al. Preparation of expanded graphite adsorbent and its oils adsorption capacity[J]. Industrial Water Treatment, 2010, 30(8):57-60.)
    Elimelech M, Phillip W A. The Future of seawater desalination:Energy, technology, and the environment[J]. Science, 2011, 333(6043):712-717.
    Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5):16018.
    Subramani A, Jacangelo J G. Emerging desalination technologies for water treatment:A critical review[J]. Water Research, 2015, 75:164-187.
    Corry B. Designing carbon nanotube membranes for efficient water desalination[J]. Journal of Physical Chemistry B, 2008, 112(5):1427-1434.
    Das R, Ali ME, Abd Hamid SB, et al. Carbon nanotube membranes for water purification:A bright future in water desalination[J]. 2013, 336:97-109.
    Yang Q, Su Y, Chi C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials, 2017, 16:1198-1202.
    Su Y, Kravets V G, Wong S L, et al. Impermeable barrier films and protective coatings based on reduced graphene oxide[J]. Nature Communications, 2014, 5:4843.
    Abraham J, Vasu K S, Williams C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12:546-550.
    Chen L, Shi G S, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Science, 2017, 550:380.
    刘国杰. 石墨烯重防腐涂料产业化研发的初步进展[J]. 中国涂料, 2016, 31:6-15. (Liu G J. Progress of the industrialization of graphene heavy-duty coatings[J]. China Coatings, 2016, 31:6-15.)
    Cui C L, Lim A T, Huang J X. A Cautionary note on graphene anti-corrosion coatings[J]. Nature Nanotechnology, 2017, 12:834-835.
    Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries:recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5):2525-2540.
    Chai J C, Liu Z H, Ma J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4(2):1600377.
    Tao Y, Xie X Y, Lv W, et al. Towards ultrahigh volumetric capacitance:graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports, 2013, 3:2975.
    Zhang C, Lv W, Tao Y, et al. Towards superior volumetric performance:design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science, 2015, 8:1390-1403.
    Xu Y, Tao Y, Zheng X Y, et al. Metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm-3[J]. Advanced Materials, 2015, 27:8082-8087.
    Li H, Tao Y, Zheng X Y, et al. Ultra-thick graphene bulk electrodes of supercapacitors for compact energy storage[J]. Energy & Environmental Science, 2016, 9:3135-3142.
    Xu Y, Tao Y, Li H, et al. Dual electronic-ionic conductivity of pseudo-capacitive filler enables high volumetric capacitance from dense graphene micro-particles[J]. Nano Energy, 2017, 36:349-355.
    Han J W, Kong D B, Lv W, et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage[J]. Nature Communications, 2018, 9:402.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(552) PDF Downloads(562) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return