ZHANG Qing-hong, SUN Xiao-feng, RUAN Hong, LI Hong-guang. Synthesis and properties of carbon quantum dots from flue ash of biomass. New Carbon Mater., 2018, 33(6): 571-577.
Citation: ZHANG Qing-hong, SUN Xiao-feng, RUAN Hong, LI Hong-guang. Synthesis and properties of carbon quantum dots from flue ash of biomass. New Carbon Mater., 2018, 33(6): 571-577.

Synthesis and properties of carbon quantum dots from flue ash of biomass

Funds:  Chinese Academy of Sciences Program Funded Project (Y20245YBR1); National Natural Science Foundation of China (21402215, 61474124).
  • Received Date: 2018-08-08
  • Accepted Date: 2018-12-27
  • Rev Recd Date: 2018-11-06
  • Publish Date: 2018-12-28
  • Carbon quantum dots (CQDs) with a good water solubility and stability were produced from cheap and easy available flue ash produced by burning straw and wood by refluxing it in an acid mixture (HNO3:H2SO4=1:3 v/v). They were characterized by XRD, HRTEM, FTIR, XPS and Raman spectroscopy. Results indicate that the CQDs are spherical particles whose cores are less than 1 nm across and are poorly crystallized with a large number of defects. The CQDs emit yellow light with emission wavelengths over 500 nm and their fluorescence quantum yield is as high as 3.83%. They are of potential use in a variety of fields such as bioimaging.
  • loading
  • Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40):12736-12737.
    Kayo Oliveira Vieira, Jefferson Bettini, Luiz Fernando Cappa de Oliveira, et al. Synthesis of multicolor photoluminescent carbon quantum dots functionalized with hydrocarbons of different chain lengths[J]. New Carbon Materials, 2017, 32(4):327-337.
    Li H, Kang Z, Liu Y, et al.Carbon nanodots:Synthesis, properties and applications[J]. J Mater Chem, 2012, 22(46):24230-24253.
    Terasaki M. Fluorescent labeling of endoplasmic reticulum[J]. Methods Cell Biol, 1988, 29, 125-135.
    Aiswal J K, Goldman E R, Mattoussi H, et al. Use of quantum dots for live cell imaging[J]. Nature methods, 2004, 1(1):73-78.
    谢文菁, 傅英懿, 马红, 等. 荧光石墨烯量子点制备及其在细胞成像中的应用[J]. 化学学报, 2012, 70(20):2169-2172. (Xie W J, Fu Y Y, Ma H, et al. Preparation of fluorescent graphene quantum dots and their application in cell imaging[J]. Acta Chimica Sinica, 2012, 70(20):2169-2172.)
    Zhu S, Meng Q, Wang L, et al.Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angew Chem Int Ed, 2013, 52(14):3953-3957.
    Li H, He X, Kang Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angew Chem Int Ed, 2010, 49(26):4430-4434.
    Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. J Mater Chem, 2009, 112(19):484-488.
    Qu Q, Zhu A, Shao X, et al. Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging[J]. Chem Commun, 2012, 48(44):5473-5475.
    Dong Y, Zhou N, Lin X, et al. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon[J]. Chem Mater, 2010, 22(21):5895-5899.
    Sahu S, Beher B, Maiti T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice:application as excellent bio-imaging agents[J]. Chem Commun, 2012, 48(70):8835-8837.
    Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chem Mater, 2009, 21(23):5563-5565.
    Zhang J, Yuan Y, Liang G L, et al. Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis[J]. Adv Science, 2015, 2(4):1-6.
    Qin X, Lu W, Asiri A M, et al. Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles-reduced graphene oxide nanocomposites for glucose detection[J]. Catal Sci Technol, 2013, 3(4):1027-1035.
    Qu S, Zhou D, Li D, et al. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering[J]. Adv Mater, 2016, 28(18):3516-3521.
    Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot[J]. Angew Chem Int Ed, 2007, 46(34):6473-6475.
    TIAN L, GHOSH D, CHEN W, et al. Nanosized carbon particles from natural gas soot[J]. Chem mater, 2009, 21(13):2803-2809.
    Qiao Z, Wang Y, Gao Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation[J]. Chem Commun, 2010, 46(46):8812-8814.
    Ye R, Xiang C, Lin J, et al. Coal as an abundant source of graphene quantum dots[J]. Nat commun, 2013, 4(2943):1-6.
    Hu C, Yu C, Li M, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(Ⅱ) detection[J]. Small, 2014, 10(23):4926-4933.
    Dong Y, Lin J, Chen Y, et al. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals[J]. Nanoscale, 2014, 6(13):7410-7415.
    Jiang B, Zhou B, Shen X, et al. Selective probing of gaseous ammonia using red-emitting carbon dots based on an interfacial response mechanism[J]. Chem-Eur J, 2015, 21(52):18993-18999.
    Peggy Z Z N, Stephanie P P C, Jessica F Y F, et al. Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions[J]. New Carbon Materials, 2016, 31(2):135-143.
    王月, 吴文婷, 吴明铂, 等. 可视化黄色荧光石油焦基碳量子点高效检测Cu2+[J]. 新型炭材料, 2015, 30(6):550-559. (Wang Y, Wu W T, Wu M B, et al. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions[J]. New Carbon Materials, 2015, 30(6):550-559.)
    Wu M, Wang Y, Wu W, et al. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J]. Carbon, 2014, 78(14):480-489.
    Shao X, Wu W, Wang R, et al. Engineering surface structure of petroleum-coke-derived carbon dots to enhance electron transfer for photooxidation[J]. Journal of Catalysis, 2016, 344:236-241.
    Henry R J. Evaluation of plant biomass resources available for replacement of fossil oil[J]. Plant Biotechnology Journal, 2010, 8(3):288-293.
    Sun Y, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J Am Chem Soc, 2006, 128(24):7756-7757.
    Tao H, Yang K, Ma Z, et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small, 2012, 8(2):281-290.
    Liu J, Rinzler A G, Dai H, et al. Fullerene pipes[J]. Science, 1998, 280(5367):1253-1256.
    Bao L, Liu C, Zhang Z L, et al. Photoluminescence-tunable carbon nanodots:surface-state energy-gap tuning[J]. Adv Mater, 2015, 27(10):1663-1667.
    Wang L, Zhu S J, Wang H Y, et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots[J]. ACS Nano, 2014, 8(3):2541-2547.
    Hu S L, Trinchi A, Atkin P, et al. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light[J]. Angew Chem Int Ed, 2015, 54(10):2970-2974.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(471) PDF Downloads(315) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return