LI Deng-hua, LU Chun-xiang, HAO Jun-jie, YANG Yu, LU Xiao-xuan, DU Su-jun, LIU Zhe. Characterization of the microstructures of carbon fibers by X-ray diffraction. New Carbon Mater., 2019, 34(1): 1-8.
Citation: LI Deng-hua, LU Chun-xiang, HAO Jun-jie, YANG Yu, LU Xiao-xuan, DU Su-jun, LIU Zhe. Characterization of the microstructures of carbon fibers by X-ray diffraction. New Carbon Mater., 2019, 34(1): 1-8.

Characterization of the microstructures of carbon fibers by X-ray diffraction

Funds:  Science and Technology Major Project of Shanxi Province(20181101019); Key Research and Development Program of Shanxi Province(201703D121015).
  • Received Date: 2018-12-20
  • Accepted Date: 2019-02-20
  • Rev Recd Date: 2019-01-30
  • Publish Date: 2019-02-28
  • Progress on the study of the structural features of carbon fibers using X-ray diffraction is reviewed, including the crystalline structural parameters of carbon fibers, orientation of crystallites along the fiber axis, degree of graphitization and micro-stress/microstrain, as well as their evolution during the manufacture of carbon fibers.
  • loading
  • Ruland W. Small-angle scattering of two-phase systems:Determination and significance of systematic deviations from Porod's Law[J]. J Appl Cryst, 1971, 4(1):70-73.
    程宇鹏. 碳纤维加固对钢筋混凝土梁结构效应影响分析[J]. 山西交通科技, 2017, 4):86-88. (Cheng Y P. The influence analysis of carbon fiber reinforcement on the structure effect of reinforced concrete beam[J]. Shanxi Science & Technology of Communications, 2017(4):86-88.)
    曹世军. 碳纤维加固公路桥梁抗弯截面的设计[J]. 山西交通科技, 2006, (5):46-47. (Cao S J. The design on bending section of carbon fiber strengthening highway bridge[J]. Shanxi Science & Technology of Communications, 2006(5):46-47.)
    李登华. 高强高模碳纤维制备过程中微观结构的演变规律[D]. 中国科学院大学博士学位论文, 2014. (Li D H. Structural evolution during the preparation of high performance carbon fibers[D]. University of Chinese Academy of Sciences, 2014.)
    李登华, 吴刚平, 吕春祥, 等. 聚丙烯腈基炭纤维中微孔的演变规律[J]. 新型炭材料, 2010, 25(1):41-47. (Li D H, Wu G P, Lu C X, et al. Evolution of microvoids in PAN-based carbon fibers[J]. New Carbon Materials, 2010, 25(1):41-47.)
    Ruland W. Carbon fibers[J]. Adv Mater, 1990, 2(11):528-536.
    Sugimoto Y, Kato T, Shioya M, et al. Structure change of carbon fibers during axial compression[J]. Carbon, 2013, 57(0):416-424.
    Fujimoto H. A new estimation method for the degree of graphitization for random layer lattices[J]. Carbon, 2010, 48(12):3446-3453.
    Ruland W. X-ray determination of crystallinity and diffuse disorder scattering[J]. Acta Cryst, 1961, 14:1180-1185.
    Ruland W. X-ray diffraction studies on carbon and graphite[J]. Chemistry and physics of carbon, 1968, 4:1-84.
    Wang H, Guo Q, Yang J, et al. Microstructural evolution and oxidation resistance of polyacrylonitrile-based carbon fibers doped with boron by the decomposition of B4C[J]. Carbon, 2013, 56(0):296-308.
    Li D F, Wang H J, Wang X K. Effect of microstructure on the modulus of PAN-based carbon fibers during high temperature treatment and hot stretching graphitization[J]. J Mater Sci, 2007, 42(12):4642-4649.
    Zhou G H, Liu Y Q, He L L, et al. Microstructure difference between core and skin of T700 carbon fibers in heat-treated carbon/carbon composites[J]. Carbon, 2011, 49(9):2883-2892.
    Qin X Y, Lu Y G, Xiao H, et al. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers[J]. Carbon, 2012, 50(12):4459-4469.
    Rennhofer H, Loidl D, Puchegger S, et al. Structural development of PAN-based carbon fibers studied by in situ X-ray scattering at high temperatures under load[J]. Carbon, 2010, 48(4):964-971.
    Wu G, Li D, Yang Y, et al. Carbon layer structures and thermal conductivity of graphitized carbon fibers[J]. J Mater Sci, 2012, 47(6):2882-2890.
    Qiu L, Zheng X H, Zhu J, et al. The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrile-based carbon fiber[J]. Carbon, 2013, 51(0):265-273.
    Northolt M G, Veldhuizen L H, Jansen H. Tensile deformation of carbon fibers and the relationship with the modulus for shear between the basal planes[J]. Carbon, 1991, 29(8):1267-1279.
    Loidl D, Peterlik H, Müller M, et al. Elastic moduli of nanocrystallites in carbon fibers measured by in-situ X-ray microbeam diffraction[J]. Carbon, 2003, 41(3):563-570.
    Franklin R E. Crystallite growth in graphitizing and non-graphitizing carbons[J]. Proc R Soc A, 1951, 209(1097):196-218.
    Warner J H, Margine E R, Mukai M, et al. Dislocation-driven deformations in graphene[J]. Science, 2012, 337(6091):209-212.
    Balima F, Pischedda V, Lefloch S, et al. An in situ small angle neutron scattering study of expanded graphite under a uniaxial stress[J]. Carbon, 2013, 57(0):460-469.
    Shioya M, Hayakawa E, Takaku A. Non-hookean stress-strain response and changes in crystallite orientation of carbon fibres[J]. J Mater Sci, 1996, 31(17):4521-4532.
    Kobayashi T, Sumiya K, Fujii Y, et al. Stress-induced microstructural changes and crystallite modulus of carbon fiber as measured by X-ray scattering[J]. Carbon, 2012, 50(3):1163-1169.
    Li D H, Lu C X, Wu G P, et al. Heat-induced internal strain relaxation and its effect on the microstructure of polyacrylonitrile-based carbon fiber[J]. J Mater Sci Technol, 2014, 30(10):1051-1058.
    Sarian S, Strong S L. Mechanical properties of stress-graphitised carbon fibers:Thermally induced relaxation and recovery[J]. Fiber Sci Technol 1971, 4(1):67-79.
    Kobayashi T, Sumiya K, Fukuba Y, et al. Structural heterogeneity and stress distribution in carbon fiber monofilament as revealed by synchrotron micro-beam X-ray scattering and micro-Raman spectral measurements[J]. Carbon, 2011, 49(5):1646-1652.
    Huang Y, Young R J. Effect of fibre microstructure upon the modulus of PAN-and pitch-based carbon fibres[J]. Carbon, 1995, 33(2):97-107.
    Azároff L V. Elements of X-ray crystallography[J]. New York:McGraw-Hill, 1968:279-281.
    贺福. 碳纤维及石墨纤维[M]. 北京:化学工业出版社, 2010. (He F. Carbon Fibre and Gaphite fibre[M]. Beijing:Chemical industry press, 2010.)
    郭金玲, 沈岳年. 用Scherrer公式计算晶粒度应注意的几个问题[J]. 内蒙古师范大学学报:自然科学汉文版, 2009, 38(3):357-358. (Guo J L, Shen Y N. Some questions on the calculation of the grain size with Scherrer formula[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2009, 38(3):357-358.)
    Zhou Z, Bouwman W G, Schut H, et al. Interpretation of X-ray diffraction patterns of (nuclear) graphite[J]. Carbon, 2014, 69(0):17-24.
    马礼敦. X射线粉末衍射的新起点-Rietveld全谱拟合[J]. 物理学进展, 1996, 2:251-271. (Ma L D. New starting of X-ray powder diffraction-Rietveld whole pattern fitting[J]. Progress in physics, 1996, 2:251-271.)
    Rietveld H. A profile refinement method for nuclear and magnetic structures[J]. Journal of Applied Crystallography, 1969, 2(2):65-71.
    Mccusker L B, Von Dreele R B, Cox D E, et al. Rietveld refinement guidelines[J]. Journal of Applied Crystallography, 1999, 32(1):36-50.
    Rietveld H. Line profiles of neutron powder-diffraction peaks for structure refinement[J]. Acta Crystallographica, 1967, 22(1):151-152.
    张彩红, 盛毅, 田红, 等. 全谱拟合法研究聚丙烯腈基碳纤维形成过程中晶态结构演变[J]. 物理学报, 2011, 60(3):405-413. (Zhang C H, Sheng Y, Tian H, et al. The evolution of crystalline structure in the preparation of PAN-based carbon fibers studied by whole powder pattern fitting[J]. Acta Phys Sin, 2011, 60(3):405-413.)
    Diamond R. A least-squares analysis of the diffuse X-ray scattering from carbons[J]. Acta Crystallographica, 1958, 11(3):129-138.
    Fujimoto H, Shiraishi M. Characterization of unordered carbon using Warren-Bodenstein's equation[J]. Carbon, 2001, 39(11):1753-1761.
    Warren B E. X-ray diffraction in random layer lattices[J]. Phys Rev, 1941, 59(9):693-698.
    Iwashita N, Chong R P, Fujimoto H, et al. Specification for a standard procedure of X-ray diffraction measurements on carbon materials[J]. Carbon, 2004, 42(10):701-714.
    Iwashita N. Comments on the revised "GAKUSHIN" method[J]. TANSO, 2006(221):48-51.
    Li D, Lu C, Wang L, et al. A reconsideration of the relationship between structural features and mechanical properties of carbon fibers[J]. Materials Science and Engineering:A, 2017, 685(2017):65-70.
    Li D, Lu C, Du S, et al. Structural features of various kinds of carbon fibers as determined by small-angle X-ray scattering[J]. Applied Physics A, 2016, 122(11):956.
    Price R J, Bokros J C. Relationship between preferred orientation, thermal expansion, and radiation-induced length changes in graphite[J]. J Appl Phys, 1965, 36(6):1897-1906.
    Fischer L, Ruland W. The influence of graphitization on the mechanical properties of carbon fibers[J]. Colloid Polym Sci, 1980, 258(8):917-922.
    Ruland W. X-ray studies on preferred orientation in carbon fibers[J]. Journal of Applied Physics, 1967, 38(9):3585-3589.
    Ruland W, Tompa H. Preferred orientation in cylindrically symmetrical systems:Transformations of orientation distributions[J]. Kolloid-ZuZPolymere, 1972, 250(5):471-473.
    Ruland W. The relationship between preferred orientation and Young's modulus of carbon fibers; proceedings of the Appl Polym Symp, F, 1969[C]. American Chemical Society.
    Maire J, Mering J. Croissance des dimensions des domaines cristallins au cours de la graphitation du carbone - carbon[J]. Carbon, 1960:345-350.
    王茂章, 贺福. 碳纤维的制造, 性质及其应用[M]. 科学出版社, 1984. (Wang M Z, He F. The Fabrication, Properties and Applications of Carbon Fibers[M]. Science Press, 1984.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(909) PDF Downloads(470) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return