XIAO Meng, XU Hong-yu, MA Zhao-kun, SONG Huai-he. Effect of crosslinking method on the microstructures and properties of polyimide-based graphite fibers. New Carbon Mater., 2019, 34(1): 19-28.
Citation: XIAO Meng, XU Hong-yu, MA Zhao-kun, SONG Huai-he. Effect of crosslinking method on the microstructures and properties of polyimide-based graphite fibers. New Carbon Mater., 2019, 34(1): 19-28.

Effect of crosslinking method on the microstructures and properties of polyimide-based graphite fibers

Funds:  National Natural Science Foundation of China(51872018).
  • Received Date: 2018-12-10
  • Accepted Date: 2019-02-20
  • Rev Recd Date: 2019-01-30
  • Publish Date: 2019-02-28
  • Different polyimide (PI) fibers with and without carboxyl groups on the polymer chain were prepared by dry-jet wet spinning using 1,2,4,5-benzene tetracarboxylic dianhydride (PMDA), p-phenylenediamine (p-PDA) and 3,5-diaminobenzoic acid (DABA) as the PI monomers with a PMDA/(DABA+ p-PDA) mass ratio of 1.02:1 and different DABA/p-PDA mass ratios. The PI fibers were chemically crosslinked with 1,4-butanediol to improve their thermal stability. The PI fibers before and after chemical crosslinking were carbonized at 1400℃ for 1 h and graphitized at 2800℃ for 1 h to prepare graphite fibers. Results indicate that the crosslinking by hydrogen bonding between carboxyl groups significantly increased the thermal stability and increased the carbonization and graphitization yields of the PI fibers. The graphitization degree and thermal conductivity of the graphite fibers from the PI with carboxyl groups are higher than those from the corresponding chemically crosslinked ones. The graphitization degree and thermal conductivity increase with the DABA/p-PDA ratio. The highest degree of graphitization (97.9%) was obtained at a DABA/p-PDA ratio of 5:95 while the highest thermal conductivity (245.6 W/(m·K)) was obtained at a DABA/p-PDA ratio of 10:90.
  • loading
  • Liu Y, Kumar S. Recent progress in fabrication, structure, and properties of carbon fibers[J]. Polymer Reviews, 2012, 52(3):234-258.
    Gupta A, Dhakate S R, Pal P, et al. Effect of graphitization temperature on structure and electrical conductivity of poly-acrylonitrile based carbon fibers[J]. Diamond and Related Materials, 2017, 78:31-38.
    Wang X, Liu J, Li Z. The graphite phase derived from polyimide at low temperature[J]. Journal of Non-Crystalline Solids, 2009, 355(1):72-75.
    Inagaki M, Kaburagi Y, Hishiyama Y. Thermal management material:Graphite[J]. Advanced Engineering Materials, 2014, 16(5):494-506.
    Leong K C, Jin L W. Study of highly conductive graphite foams in thermal management applications[J]. Advanced Engineering Materials, 2008, 10(4):338-345.
    Yuan G, Li X, Dong Z, et al. The structure and properties of ribbon-shaped carbon fibers with high orientation[J]. Carbon, 2014, 68:426-439.
    Gallego N C, Edie D D, Nysten B. The thermal conductivity of ribbon-shaped carbon fibers[J]. Carbon, 2000, 38(7):1003-1010.
    高晓晴, 郭全贵, 刘朗. 高导热炭材料的研究进展[J]. 功能材料, 2006, 37(2):173-177. (Gao X, Guo Q, Liu L, et al. The study progress on carbon materials with high thermal conductivity[J]. Functional Material, 2006, 37(2):173-177)
    孔清, 樊桢, 余立琼, 等. 高导热C/C复合材料的发展现状[J]. 宇航材料工艺, 2014, 44(1):16-23. (Kong Q, Fan Z, Yu L, et al. Progress of high-thermal conductivity carbon/carbon composites[J]. Aerospace Materials and Technology, 2014, 44(1):16-23.)
    芦时林, Brian Rand. 高导热大直径中间相沥青炭纤维的研制及结构表征[J]. 新型炭材料, 2000, 15(1):1-5. (Lu S, Brian R. Large diameter carbon filaments from mesophase pitch for thermal management application[J]. New Carbon Materials, 2000, 15(1):1-5.)
    马兆昆, 史景利, 刘朗, 等. 中间相沥青纤维制备高导热炭材料的研究[J]. 无机材料学报, 2006, 21(5):1167-1172. (Ma Z, Shi J, Liu L, et al. High thermal conductivity carbon materials made from mesophase pitch fibers[J]. Journal of Inorganic Materials, 2006, 21(5):1167-1172.)
    李同起, 胡子君. 定向高导热碳材料及其热管理结构设计[J]. 宇航材料工艺, 2007, 37(1):16-18. (Li T, Hu Z. Carbon materials with high directional thermal conductivity and their structure design of thermal management system[J]. Aerospace Materials and Technology, 2007, 37(1):16-18.)
    Jing M, Wang C, Wang Q, et al. Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350-600℃[J]. Polymer Degradation and Stability, 2007, 92(9):1737-1742.
    Yuan G, Li X, Dong Z, et al. Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity[J]. Carbon, 2014, 68:413-425.
    刘均庆, 史景利, 高晓晴, 等. 中间相沥青碳纤维径向辐射结构形成机理研究[J]. 化工新型材料, 2011, 39(2):84-87. (Liu J, Shi J, Gao X, et al. The study on formation mechanism of radial structure of mesophase pitch-based carbon fibers[J]. New Chemical Materials, 2011, 39(2):84-87.)
    Inagaki M, Ohta N, Hishiyama Y. Aromatic polyimides as carbon precursors[J]. Carbon, 2013, 61(11):1-21.
    Gajanan S B, Renata S. Conversion of co-polyimide fiber into carbon fiber[J]. American Carbon Society, 1997, 406-407.
    Cao L, Zhang M, Niu H, et al. Structural relationship between random copolyimides and their carbon fibers[J]. Journal of Materials Science, 2016, 52(4):1883-1897.
    Zhang M Y, Niu H Q, Qi S L, et al. Structure evolutions involved in the carbonization of polyimide fibers with different chemical constitution[J]. Materials Today Communications, 2014, 1(1-2):1-8.
    张梦颖, 牛鸿庆, 武德珍. 前驱体结构对聚酰亚胺基碳纤维结构和性能的影响[EB/OL]. http://www.paper.edu.cn/releasepaper/content/201704-483.[2017-04-25]. (Zhang M, Niu H, Wu D. Effect of precusor structure on the structures and properties of polyimide-based carbon fibers[EB/OL]. http://www.paper.edu.cn/releasepaper/content/201704-483.[2017-04-25].)
    Chang J, Niu H, He M. Structure-property relationship of polyimide fibers containing ether groups[J]. Journal of Applied Polymer Science, 2015, 132(34).
    Huang S B, Jiang Z Y, Ma X Y. Properties, morphology and structure of BPDA/PPD/ODA polyimide fibres[J]. Plastics Rubber & Composites, 2013, 42(10):407-415.
    Li W, Wu Z, Jiang H. High-performance aromatic polyimide fibres[J]. Journal of Materials Science, 1996, 31(16):4423-4431.
    Xiao M, Li N, Ma Z, et al. The effect of doping graphene oxide on the structure and property of polyimide-based graphite fibre[J]. RSC Advances, 2017, 7(89):56602-56610.
    徐强, 徐樑华, 安娜, 等. PAN基碳纤维预氧丝的取向结构及力学性能表征[J]. 合成纤维工业, 2006, 29(5):4-6. (Xu Q, Xu L, An N, et al. Characterization of orientation structure and mechanical properties of PAN-based carbon preoxidized yarn[J]. China Synthetic Fiber Industry, 2006, 29(5):4-6.)
    贺福, 杨永岗. 超级导热型沥青基碳纤维[J]. 高科技纤维与应用, 2003, 28(5):27-31. (He F, Yang Y. Super thermal conductive mesophase pitch-based carbon fibers[J]. Hi-tech Fiber and Application, 2003, 28(5):27-31.)
    Favvas E P, Katsaros F K, Papageorgiou S K, et al. A review of the latest development of polyimide based membranes for CO2 separations[J]. Reactive and Functional Polymers, 2017, 120:104-130.
    Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separation-a review[J]. Carbon, 2004, 42(2):241-259.
    Vanherck K, Koeckelberghs G, Vankelecom I J. Crosslinking polyimides for membrane applications:A review[J]. Progress in Polymer Science, 2013, 38(6):874-896.
    Xiao Y, Chung T, Guan H, et al. Synthesis, cross-linking and carbonization of co-polyimides containing internal acetylene units for gas separation[J]. Journal of Membrane Science, 2007, 302(1/2):254-264.
    Staudt-Bickel C, Koros W J. Improvement of CO2/CH4, separation characteristics of polyimides by chemical crosslinking[J]. Journal of Membrane Science, 1999, 155(1):145-154.
    Wind J D, Staudtbickel C, Paul D R. The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes[J]. Indengchemres, 2002, 41(24):6139-6148.
    John D W, Claudia S, Donald R P. solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction[J]. Macromolecules, 2015, 36(6):1882-1888.
    Sun M, Chang J, Tian G, et al. Preparation of high-performance polyimide fibers containing benzimidazole and benzoxazole units[J]. Journal of Materials Science, 2016, 51(6):2830-2840.
    Yin C, Dong J, Zhang Z. Structure and properties of polyimide fibers containing benzimidazole and Amide Units[J]. Journal of Polymer Science Part B Polymer Physics, 2015, 53(3):183-191.
    Hess S, Staudt C. Variation of esterfication conditions to optimize solid-state crosslinking reaction of DABA-containing copolyimide membranes for gas separations[J]. Desalination, 2007, 217(1-3):8-16.
    Li A, Ma Z, Song H, et al. The effect of liquid stabilization on the structures and the conductive properties of polyimide-based graphite fibers[J]. RSC Adv, 2015, 5(97):79565-79571.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(436) PDF Downloads(245) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return