SUN Wen, YANG Shao-bin, SHEN Ding, DONG Wei. The formation of NaxC72(1 ≤ x ≤ 7) on a single layer graphene surface:a first-principles study. New Carbon Mater., 2019, 34(2): 146-152.
Citation: SUN Wen, YANG Shao-bin, SHEN Ding, DONG Wei. The formation of NaxC72(1 ≤ x ≤ 7) on a single layer graphene surface:a first-principles study. New Carbon Mater., 2019, 34(2): 146-152.

The formation of NaxC72(1 ≤ x ≤ 7) on a single layer graphene surface:a first-principles study

Funds:  National Natural Science Foundation of China(51274119).
  • Received Date: 2019-02-12
  • Accepted Date: 2019-04-30
  • Rev Recd Date: 2019-04-10
  • Publish Date: 2019-04-28
  • The formation of NaxC72 (1 ≤ x ≤ 7) on a single layer graphene surface was investigated using a first-principles study based on density functional theory. Adsorption sites, the lowest energy structures, the adsorption energy, Mulliken population, density difference, electron localization function (ELF) and the partial density of states (PDOS) of NaxC72(1 ≤ x ≤ 7) were calculated. It was found, based on the calculation of absorption energy, that the optimum formation mode of NaxC72(1 ≤ x ≤ 7) is that Na atoms are adsorbed on graphene bilaterally when x<5 and a Na cluster is formed when x ≥ 5. The average voltages of NaxC72 decrease with x when x<5 and increase with x when x ≥ 5. The maximum sodium storage capacity is 124 mAh/g, corresponding to a structure of Na4C72. The weak ionic bonds between Na atoms and graphene are formed by charge transfer from Na 3s to graphene π*, and metallic bonds are found between Na atoms in Na cluster as revealed by density difference, ELF and Mulliken population. Moreover, PDOS results show that the Fermi level of NaxC72(1 ≤ x ≤ 7) shifts to the graphene π* with increasing x, resulting in an increase of electronic conductivity.
  • loading
  • Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8):2338-2360.
    Zhou Y, Yang Y, Jiao M, et al. What is the promising anode material for Na ion batteries?[J]. Science Bulletin, 2018, 63(3):146-148.
    Yang L, Zhu Y E, Sheng J, et al. T-Nb2O5/C Nanofibers prepared through electrospinning with prolonged cycle durability for high-rate sodium-ion batteries induced by pseudocapacitance[J]. Small, 2017, 13(46):1702588.
    Liu H, Su D, Zhou R, et al. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage[J]. Advanced Energy Materials, 2012, 2(8):970-975.
    Stephenson T, Li Z, Olsen B, et al. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites[J]. Energy & Environmental Science, 2014, 7(1):209-231.
    Zhao W, Ribeiro R M, Toh M, et al. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2[J]. Nano letters, 2013, 13(11):5627-5634.
    马晓轩, 郝健, 李垚, 等. 类石墨烯二硫化钼在锂离子电池负极材料中的研究进展[J]. 材料导报, 2014, 28(11):1-9. (MA X, HAO J, LI Y, et al. Research progress of 2H-MoS2 based materials in the application to lithium ion batteries anodes[J]. Materials Review A:Review, 2014, 28(6):1-9.)
    Ge P, Fouletier M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics, 1988, 28:1172-1175.
    Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical reviews, 2014, 114(23):11636-11682.
    Luo W, Jian Z, Xing Z, et al. Electrochemically expandable soft carbon as anodes for Na-ion batteries[J]. ACS Cent Sci, 2015, 1:516-522.
    闻雷, 刘成名, 宋仁升, 等. 石墨烯材料的储锂行为及其潜在应用[J]. 化学学报, 2014, 72(3):333-344. (WEN L, SONG R, SHI Y, et al. Lithium storage characteristics and possible applications of graphene materials[J]. Acta Chimica Sinica, 2014, 72(3):333-344.)
    Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4):1271-1273.
    Thomas P, Billaud D. Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties[J]. Electrochimica Acta, 2002, 46(1):39-47.
    钱江锋, 高学平, 杨汉西. 电化学储钠材料的研究进展[J]. 电化学, 2013, 19(6):523-529. (QIAN J, GAO X, YANG Hi. Electrochemical Na-storage materials and their applications for Na-ion batteries[J]. J Electrochem (in Chinese), 2013(6):523-529.)
    邱珅, 吴先勇, 卢海燕, 等. 碳基负极材料储钠反应的研究进展[J]. 储能科学与技术,2016, 5(3):258-267. (QIU S, WU X, LU H, et al. Research progress of carbon-based sodium-storage anode materials[J]. Energy Storage Science and Technology, 2016, 5(3):258-267.)
    Lotfabad E M, Ding J, Cui K, et al. High-density sodium and lithium ion battery anodes from banana peels[J]. Acs Nano, 2014, 8(7):7115-7129.
    Bai Y, Wang Z, Wu C, et al. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery[J]. ACS Applied Materials & Interfaces, 2015, 7(9):5598-5604.
    Xiao L, Cao Y, Henderson W A, et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries[J]. Nano Energy, 2016, 19:279-288.
    Malyi O I, Sopiha K, Kulish V V, et al. A computational study of Na behavior on graphene[J]. Applied Surface Science, 2015, 333:235-243.
    Chan K T, Neaton J B, Cohen M L. First-principles study of metal adatom adsorption on graphene[J]. Physical Review B, 2008, 77(23):235430.
    Gong C, Lee G, Shan B, et al. First-principles study of metal-graphene interfaces[J]. Journal of Applied Physics, 2010, 108(12):123711.
    Khomyakov P A, Giovannetti G, Rusu P C, et al. First-principles study of the interaction and charge transfer between graphene and metals[J]. Physical Review B, 2009, 79(19):195425.
    Boukhvalov D W, Katsnelson M I, Lichtenstein A I. Hydrogen on graphene:Electronic structure, total energy, structural distortions, and magnetism from first-principles calculation[J]. Physical Review B, 2008, 77(3):035427.
    Zhu Z H, Lu G Q. Comparative study of Li, Na, and K adsorptions on graphite by using ab initio method[J]. Langmuir, 2004, 20(24):10751-10755.
    Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B):B864.
    Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B Condensed Matter, 1990, 41(11):7892.
    Segall M D, Shah R, Pickard C J, et al. Population analysis of plane-wave electronic structure calculations of bulk materials[J]. Physical Review B Condensed Matter, 1996, 54(23):16317.
    Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15):1787-1799.
    Chadi D J. Special points for Brillouin-zone integrations[J]. Physical Review B Condensed Matter, 1977, 16(4):5188——5192.
    沈丁, 孙闻, 李思南, 等. 石墨嵌锂的结构转变和弹性性质计算研究[J]. 原子与分子物理学报, 2017, 2:038. (SHEN D, SUN W, LI S, et al. Calculation of structural transformations and elastic properties of graphite in the in sertion process of lithium[J]. J Atom Mol Phys, 2017, 2:038.)
    赵银昌, 戴振宏, 隋鹏飞,等. 单层BC7片的储锂容量研究[J]. 中国科学:物理学力学天文学, 2013(9):48-52. (ZHAO C, DAI Z, SUI P, et al. Study of lithium storage capacity on single BC7 sheet[J]. Sci Sin-Phys Mech Astron, 2013, 43, 1052.)
    Burdett J K, McCormick T A. Electron localization in molecules and solids:The meaning of ELF[J]. The Journal of Physical Chemistry A, 1998, 102(31):6366-6372.
    De Santis L, Resta R. Electron localization at metal surfaces[J]. Surface science, 2000, 450(1-2):126-132.
    Tsirelson V, Stash A. Determination of the electron localization function from electron density[J]. Chemical Physics Letters, 2002, 351(1-2):142-148.
    杜瑞, 陈玉红, 张致龙, 等. H2分子在Li3N(100)表面吸附的第一性原理研究[J]. 化学学报, 2011, 69(10):1167-1172. (DU R, CHEN Y H, ZHANG Z L, et al. First principles study of H2 molecule adsorption on Li3 N(110) surfaces[J]. Acta Chim Sinica, 2011, 69(10):1167-1172)
    陈玉红, 刘婷婷, 张梅玲,等. H2分子在Mg3N表面吸附的第一性原理研究[J]. 化学学报, 2017, 75(7):708-714. (CHEN Y, LIU T, ZHANG M, et al. First principles study on the adsorption of H2 molecules on Mg3N2 surface[J]. Acta Chim. Sinica, 2017, 75(7):708-714.)
    刘贵立, 张国英, 鲍君善, 等. TiF3,TiCl3中阴阳离子对LiBH4协同催化机理的第一性原理研究[J]. 物理学报, 2014(24):475-482. (LIU G, ZHANG G, BAO J, et al. A first principles study on the synergistic catalytic mechanism of anion, cation ions in TiF3, TiCl3 catalysts for LiBH4 hydrogen-storage materials[J]. Acta Physica Sinica 2014(24):475-482.)
    卢天, 陈飞武. 原子电荷计算方法的对比[J]. 物理化学学报, 2012, 28(1):1-18. (LU T, CHEN F. Comparison of computational methods for atomic charges[J]. Acta Physico-Chimica Sinica, 2012, 28(1):1-18.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(546) PDF Downloads(400) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return