DENG Chuan, ZHANG Wei-ke, YANG Yan-qing, GAO Ze-yu, Wang Jia-wei, WEI Xian-xian. Preparation and microwave absorption properties of magnetic carbon nano-onion matrix composites. New Carbon Mater., 2019, 34(2): 170-180.
Citation: DENG Chuan, ZHANG Wei-ke, YANG Yan-qing, GAO Ze-yu, Wang Jia-wei, WEI Xian-xian. Preparation and microwave absorption properties of magnetic carbon nano-onion matrix composites. New Carbon Mater., 2019, 34(2): 170-180.

Preparation and microwave absorption properties of magnetic carbon nano-onion matrix composites

Funds:  The 59th batch of Open Category China Postdoctoral Funds (2016M592654); Scientific Research Foundation for Young Scientists of Shanxi Province (201601D021134); The Key Research and Development Projects of Shanxi Province(201803D31049).
  • Received Date: 2019-01-30
  • Accepted Date: 2019-04-30
  • Rev Recd Date: 2019-04-02
  • Publish Date: 2019-04-28
  • Magnetic carbon nano-onions (MCNOs) and multi-wall carbon nanotubes (MWCNTs) were prepared by chemical vapor deposition using a stainless steel mesh as the substrate and a sol-gel derived LaFeO3 as the catalyst. They were dispersed in water with a mass ratio of 1:1, and spray-dried with the assistance of ultrasonication to form hybrid granules. The morphology and magnetic permeability of the granules were investigated by XRD, SEM, TEM, Raman spectroscopy and a vibrating sample magnetometer. The granules were coated on a glass plate to evaluate their microwave absorption properties with a microwave vector network analyzer. Results showed that the absorption ability of the hybrid granule coatings was significantly improved in the frequency range 2-18 GHz compared with MCNOs or MWCNTs alone under the same conditions. With an increase of the coating thickness, the maximum absorption peak shifts to a lower frequency. The coating shows the best absorption properties when the thickness is 3.5 mm, where the maximum peak value reaches -25.6 dB and the effective bandwidth of less than -10 dB reaches 2.2 GHz.
  • loading
  • Shahzad F, Alhabeb M, Hatter C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304):1137-1140.
    Frey A H. Headaches from cellular telephones:Are they real and what are the implications?[J]. Environmental Health Perspectives, 1998, 106(3):101-103.
    姜志旺, 崔占豪, 张红霞. 电磁污染:看不见的危害[J]. 生态经济, 2014, 30(4):6-9. (Jiang Z, Cui Z, Zhang H. Electromagnetic pollution:Invisible hazards[J]. Ecological Economy, 2014, 30(4):6-9.)
    Shu R, Zhang G, Wang X, et al. Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers[J]. Chemical Engineering Journal, 2018, 337:242-255.
    Yu L, Lan X, Wei C. MWCNT/NiO-Fe3O4 hybrid nanotubes for efficient electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2018, 748:111-116.
    Machinerieen N V. Dispositif et procédé pour l'amélioration de dispositifs de production et de réception d'ondes électriques ultra-courtes:FR:Netherlands, 802728[P]. 1936.
    何永佳, 肖培浩, 肖静, 等. 吸附钡铁氧体的多孔陶粒吸波材料制备及其性能[J]. 材料科学与工程学报, 2017, 35(6):861-865. (He Y, Xiao P, Xiao J, et al. Preparation and performances of porous electromagnetic wave absorbing ceramisite coated with barium ferrite[J]. Journal of Materials Science & Engineering, 2017, 35(6):861-865.)
    解帅, 冀志江, 水中和, 等. 网格表面结构石膏基材料的电磁波吸收性能[J]. 硅酸盐学报, 2018, 46(1):156-162. (Xie S, Ji Z, Shui Z, et al. Electromagnetic wave absorption properties of gypsum-based materials with grid structure[J]. Journal of the Chinese Ceramic Society, 2018, 46(1):156-162.)
    庞建峰, 马喜君, 谢兴勇. 电磁吸波材料的研究进展[J]. 电子元件与材料, 2015, 34(2):7-12. (Pang J, Ma X, Xie X. Research progress of microwave absorption materials[J]. Electronic Components and materials,2015, 34(2):7-12.)
    Song W, Guan X, Fan L, et al. Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites[J]. Carbon, 2016, 100:109-117.
    Lee S H, Kang D H, Oh Il-Kwon. Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film[J]. Carbon, 2017, 111:248-257.
    Song W, Fan L, Hou Z, et al. A wearable microwave absorption cloth[J]. Journal of Materials Chemistry C, 2017, 5:2432-2441.
    Belaabed B, Wojkiewicz J L, Lamouri S, et al. Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties[J]. Journal of Alloys and Compounds, 2012, 527:137-144.
    刘敏, 向军, 吴志鹏, 等. Fe-Co-Ni合金纳米粒子镶嵌的碳纳米纤维的简单制备及其吸波性能[J]. 无机化学学报, 2017, 33(1):57-65. (Liu M, Xiang J, Wu Z, et al. Facile preparation and microwave absorption properties of Fe-Co-Ni alloy nanoparticle embedded-carbon nanofibers[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(1):57-65.)
    Li N, Huang G, Li Y, et al. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure[J]. ACS Appl Mater Interfaces, 2017, 9(3):2973-2983.
    Lin L, Xing H, Shu R, et al. Preparation and microwave absorption properties of multi-walled carbon nanotubes decorated with Ni-doped SnO2 nanocrystals[J]. RSC Advances, 2015, 5(115):94539-94550.
    赵琪, 马俊宾, 谢明, 等. 超声喷雾化学镀法制备镀Ni碳纳米管及其微波吸收性能[J]. 复合材料学报, 2018, 35(1):117-123. (Zhao Q, Ma J, Xie M, et al. Ultrasonic spray preparation of chemical Ni-plating carbon nanotubes and microwave absorbing properties[J]. Acta Materiae Compositae Sinica, 2018, 35(1):117-123.)
    Wang Y, Wang W, Sun J, et al. Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance[J]. Carbon, 2018, 135:1-11.
    Han D, Or S W, Dong X, et al. FeSn2/defective onion-like carbon core-shell structured nanocapsules for high-frequency microwave absorption[J]. Journal of Alloys and Compounds, 2017, 695:2605-2611.
    Su X, Zhang J, Jia Y, et al. Preparation and microwave absorption property of nano onion-like carbon in the frequency range of 8.2-12.4 GHz[J]. Journal of Alloys and Compounds, 2017, 695:1420-1425.
    Mortazavi S Z, Reyhani A, Mirershadi S. Hydrogen storage properties of multi-walled carbon nanotubes and carbon nano-onions grown on single and bi-catalysts including Fe, Mo, Co and Ni supported by MgO[J]. International Journal of Hydrogen Energy, 2017, 42(39):24885-24896.
    Bouhouch L, Fadel M, Hilali E. Magnetic properties of the electrolytic super alloys Ni-Fe[J]. physica status solidi (c), 2006, 3(9):3253-3256.
    张卫珂, 付俊杰, 常杰, 等. 纳米洋葱碳的制备及其纯化研究[J]. 新型炭材料, 2014, 29(5):398-403. (Zhang W, Fu J, Chang J, et al. Fabrication and purification of carbon nano onions[J]. New Carbon Materials, 2014, 29(5):398-403.)
    Liu X, Wang L, Ma Y, et al. Enhanced microwave absorption properties by tuning cation deficiency of perovskite oxides of two-dimensional LaFeO3/C composite in X-Band[J]. ACS Appl Mater Interfaces, 2017, 9(8):7601-7610.
    姚辉, 蔡炜, 赵永生, 等. 低电阻率多壁碳纳米管粉体的制备和表征[J]. 中国有色金属学报, 2015, 25(11):3141-3146. (Yao H, Cai W, Zhao Y, et al. Preparation and characterization of multiwalled carbon nanotube with low resistivity[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11):3141-3146.)
    He C, Shi C, Du X, et al. TEM investigation on the initial stage growth of carbon onions synthesized by CVD[J]. Journal of Alloys and Compounds, 2008, 452(2):258-262.
    Hutchison J L, Kiselev N A, Krinichnaya E P, et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method[J]. Carbon, 2001, 39(10):761-770.
    Roy D, Chhowalla M, Wang H, et al. Characterisation of carbon nano-onions using Raman spectroscopy[J]. Chemical Physics Letters, 2003, 373(1-2):52-56.
    Dhand V, Prasad J S, Rao M V, et al. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst[J]. Materials Science and Engineering C, 2013, 33(2):758-762.
    Bogdanov K, Fedorov A, Osipov V, et al. Annealing-induced structural changes of carbon onions:High-resolution transmission electron microscopy and Raman studies[J]. Carbon, 2014, 73:78-86.
    Laguna-Marco M A, Sánchez-Marcos J, Menéndez N, et al. Microstructural, electronic and magnetic characterization of Fe-based nanoparticles embedded in Al matrix[J]. Materials & Design, 2016, 93:388-396.
    Zhang K, Wu F, Li J, et al. Networks constructed by metal organic frameworks (MOFs) and multiwall carbon nanotubes (MCNTs) for excellent electromagnetic waves absorption[J]. Materials Chemistry and Physics, 2018, 208:198-206.
    Al-Saleh MH, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites[J]. Carbon, 2009, 47(7):1738-1746.
    陈明东, 揭晓华, 张海燕. 碳纳米管复合吸波涂层微波吸收性能的模拟计算[J]. 物理学报, 2014, 63(6):066103-1-066103-6. (Chen M, Jie X, Zhang H. Simulation and calculation of the absorbing microwave properties of carbon nanotube composite coating[J]. Acta Physica Sinica, 2014, 63(6):066103-1-066103-6.)
    Qi X, Hu Q, Xu J, et al. Enhanced microwave absorption properties and mechanism of core/shell structured magnetic nanoparticles/carbon-based nanohybrids[J]. Materials Science and Engineering B, 2016, 211:53-60.
    Cao M, Yang J, Song W, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48:788-796.
    Wang X, Ma T, Shu J, et al. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with brosdened bandwidth[J]. The Chemical Engineering Journal, 2017, 332:321-330.
    Wen B, Cao Mu, Hou Z, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65:124-139.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(624) PDF Downloads(195) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return