HUANG Man-hua, TANG Zhi-hong, YANG Jun-he. Research progress on the structure of graphene oxide. New Carbon Mater., 2019, 34(4): 307-314.
Citation: HUANG Man-hua, TANG Zhi-hong, YANG Jun-he. Research progress on the structure of graphene oxide. New Carbon Mater., 2019, 34(4): 307-314.

Research progress on the structure of graphene oxide

Funds:  National Natural Science Foundation of China (51272157); Shanghai Natural Science Foundation (16ZR1423400).
  • Received Date: 2019-04-05
  • Accepted Date: 2019-09-10
  • Rev Recd Date: 2019-07-02
  • Publish Date: 2019-08-28
  • The structure of graphene oxide (GO) is fundamental to understanding its properties and to realizing its applications. Experiment observations of the GO structure from different researchers are similar. However, the interpretation of the experimental data is still controversial due to the complicated oxygen functionalities and their arrangement. The Lerf-Klinowski structural model is one of the most popular used to fit experimental data and explain properties such as hydrophilicity and electrical resistivity. However, it has been challenged by new findings, and new structural models have been proposed in recent years. Based on the acidity of GO, Dimiev et al. proposed a dynamic structural model to explain the structure change of GO during its preparation and preservation in water. Rourke et al. proposed a two-component structural model to account for the acidification and oxidation behavior.
  • loading
  • Novoselov K S, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Geim A K, Novoselov K S. The rise of graphene[J].Nature Mater, 2007, 6:183-191.
    Brodie B. Note sur un nouveau procédé pour la purification et la désagrégation du graphite[J]. Ann Chim Phys, 1855, 45:351-353.
    Ferrari A C, Bonaccorso F, Fal'ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J].Nanoscale, 2015, 7(11):4598-4610.
    Singh R K, Kumar R, Singh D P. Graphene oxide:strategies for synthesis, reduction and frontier applications[J]. RSC Adv, 2016, 6(69):64993-65011.
    Kim J, Cote L J, Huang J. Two dimensional soft material:New faces of graphene oxide[J]. Accounts of Chemical Research, 2012, 45(8):1356-1364.
    Ma X, Zachariah M R, Zangmeister C D. Reduction of suspended graphene oxide single sheet nanopaper:The effect of crumpling[J]. The Journal of Physical Chemistry C, 2013, 117(6):3185-3191.
    Guo W, Jiang L. Two-dimensional ion channel based soft-matter piezoelectricity[J].Science China Materials, 2014, 57(1):2-6.
    Hong S H, Shen T Z, Song J K. Controlling wrinkles and assembly patterns in dried graphene oxide films using lyotropic graphene oxide liquid crystals[J]. Liquid Crystals, 2016:1-9.
    Zhao F, Zhao Y, Chen N, et al. Stimuli-deformable graphene materials:from nanosheet to macroscopic assembly[J]. Materials Today, 2016, 19(3):146-156.
    Narayan R, Kim J E, Kim J Y, et al. Graphene oxide liquid crystals:Discovery, evolution and applications[J]. Advanced Materials, 2016, 28(16):3045-3068.
    Shen T Z, Hong S H, Lee B, et al. Bottom-up and top-down manipulations for multi-order photonic crystallinity in a graphene-oxide colloid[J]. Npg Asia Materials, 2016, 8(8):296.
    Li Z, Liu Z, Sun H, et al. Superstructured assembly of nanocarbons:Fullerenes, nanotubes, and graphene[J].Chemical Reviews, 2015, 115(15):7046-7117.
    Wang M, Niu Y, Zhou J, et al. The dispersion and aggregation of graphene oxide in aqueous media[J].Nanoscale, 2016, 8(30):14587-14592.
    Lerf A, He H, Forster M, et al. Structure of graphite oxide revisited[J].The Journal of Physical Chemistry B, 1998, 102(23):4477-4482.
    Dimiev A M, Alemany L B, Tour J M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model[J]. ACS Nano, 2013, 7(1):576-588.
    Hofmann U, Holst R. Vber die Säurenatur und die Methylierung von Graphitoxyd[J].Berichte der deutschen chemischen Gesellschaft (A and B Series), 1939, 72(4):754-771.
    Tararan A, Zobelli A, Benito A M, et al. Revisiting graphene oxide chemistry via spatially-resolved electron energy loss spectroscopy[J].Chemistry of Materials, 2016, 28(11):3741-3748.
    Gomez-Navarro C, Meyer J C, Sundaram R S, et al. Atomic structure of reduced graphene oxide[J]. Nano Letters, 2010, 10(4):1144-1148.
    Erickson K, Erni R, Lee Z, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40):4467-4472.
    Mkhoyan K A. Atomic and electronic structure of graphene oxide[J].Nano Lett, 2009, 9:1058-1063.
    Sokolov D A, Morozov Y V, McDonald M P, et al. Direct observation of single layer graphene oxide reduction through spatially resolved, single sheet absorption/emission microscopy[J].Nano Letters, 2014, 14(6):3172-3179.
    Wahab H, Xu G, Jansing C, et al. Signatures of different carbon bonds in graphene oxide from soft x-ray reflectometry[J]. X-Ray Spectrometry, 2015, 44(6):468-4673.
    Guo J, Lee J, Contescu C I, et al. Crown ethers in graphene[J].Nature Communications, 2014, 5:5389.
    Choudhary S, Mungse H P, Khatri O P. Hydrothermal deoxygenation of graphene oxide:Chemical and structural evolution[J]. Chemistry, an Asian journal, 2013, 8(9):2070-2078.
    Szabó T, Berkesi O, Forgó P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J].Chem Mat, 2006, 18(11):2740-2749.
    Dimiev A, Kosynkin D V, Alemany L B, et al. Pristine graphite oxide[J].Journal of the American Chemical Society, 2012, 134(5):2815-2822.
    Dimiev A M. Mechanism of Formation and Chemical Structure of Graphene oxide[M]. Graphene Oxide:Fundamentals and Applications, 2016:36-84.
    Whitby R L. Chemical control of graphene architecture:tailoring shape and properties[J]. ACS Nano, 2014, 8(10):9733-9754.
    Wang Z, Shirley M D, Meikle S T, et al. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions[J]. Carbon, 2009, 47(1):73-79.
    Rourke J P, Pandey P A, Moore J J, et al. The real graphene oxide revealed:Stripping the oxidative debris from the graphene-like sheets[J]. Angewandte Chemie, 2011, 50(14):3173-3177.
    Fan X, Peng W, Li Y, et al.Deoxygenation of exfoliated graphite oxide under alkaline conditions:A green route to graphene preparation[J]. Advanced Materials, 2008, 20(23):4490-4493.
    Thomas H R, Day S P, Woodruff W E, et al. Deoxygenation of graphene oxide:Reduction or cleaning?[J]. Chemistry of Materials, 2013, 25(18):3580-3588.
    Thomas HR, Vallés C, Young RJ, et al. Identifying the fluorescence of graphene oxide[J].J Mater Chem C, 2013, 1(2):338-342.
    Karabanova L V, Whitby R L D, Korobeinyk A, et al. Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents[J].Composites Science and Technology, 2012, 72(8):865-872.
    Guo Z, Wang S, Wang G, et al. Effect of oxidation debris on spectroscopic and macroscopic properties of graphene oxide[J]. Carbon, 2014, 76:203-211.
    Bonanni A, Ambrosi A, Chua CK, et al. Oxidation debris in graphene oxide is responsible for its inherent electroactivity[J].ACS Nano, 2014, 8(5):4197-4204.
    Chen X, Chen B. Direct observation, molecular structure, and location of oxidation debris on graphene oxide nanosheets[J]. Environmental Science & Technology, 2016, 50(16):8568-8577.
    Dimiev A M, Polson T A. Contesting the two-component structural model of graphene oxide and reexamining the chemistry of graphene oxide in basic media[J]. Carbon, 2015, 93:544-554.
    Rourke J P, Wilson N R. A defence of the two-component model of graphene oxide[J]. Carbon, 2016, 96:339-3341.
    Rodriguez Pastor I, Ramos Fernandez G, Varela Rizo H, et al. Towards the understanding of the graphene oxide structure:How to control the formation of humic- and fulvic-like oxidized debris[J].Carbon, 2015, 84:299-309.
    Sun Y, Wang S, Li C, et al. Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties[J]. Physical Chemistry Chemical Physics:PCCP, 2013, 15(24):9907-9913.
    Fan T, Zeng W, Tang W, et al. Controllable size-selective method to prepare graphene quantum dots from graphene oxide[J]. Nanoscale Research Letters, 2015, 10:55.
    Naumov A, Grote F, Overgaard M, et al. Graphene oxide:A one- versus two-component material[J]. Journal of the American Chemical Society, 2016, 138(36):11445-11448.
    Dave SH, Gong C, Robertson AW, et al. Chemistry and structure of graphene oxide via direct imaging[J]. ACS Nano, 2016, 10(8):7515-7522.
    Spector MS, Naranjo E, Chiruvolu S, et al. Conformations of a tethered membrance crumpling in gaphitic oxide[J]. Phys Rev Lett., 1994, 73(21):2867-2870.
    Wen X, Garland CW, Hwa T, et al. Crumpled and collapsed conformation in graphite oxide membranes[J]. Nature, 1992, 355(6359):426-428.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(525) PDF Downloads(389) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return