GUAN Fang-lan, XIA He, ZHOU Yi-fan. Preparation and properties of graphene-epoxy/alumina foam composites. New Carbon Mater., 2019, 34(6): 587-592.
Citation: GUAN Fang-lan, XIA He, ZHOU Yi-fan. Preparation and properties of graphene-epoxy/alumina foam composites. New Carbon Mater., 2019, 34(6): 587-592.

Preparation and properties of graphene-epoxy/alumina foam composites

Funds:  Scientific and Technology of General Project of Beijing Educational Committee(KM201810012005); 2018 Beijing Insititute of Fashion Technology ‘shipei plan’.
  • Received Date: 2019-10-05
  • Accepted Date: 2020-01-03
  • Rev Recd Date: 2019-12-03
  • Publish Date: 2019-12-28
  • Graphene-epoxy/alumina foam composites were prepared by repeated impregnation of alumina foam with a graphene oxide (GO) suspension and drying, followed by annealing at 600 to 1 000℃ under an Ar atmosphere and infiltration of epoxy and crosslinking agents into the foam under vacuum. XRD, SEM and Raman spectroscopy were used to characterize the microstructures of the composites. Results indicated that the GO was reduced more thoroughly at a higher annealing temperature. The thermal and electrical conductivities of the composite reached 2.11 W/m·K and 45 S/m, respectively, with a GO content of 0.533 wt% when an annealing temperature of 1 000℃ was used. The graphene loaded on the surface of the alumina foam greatly increased the thermal and electrical conductivities of the composites while the alumina foam network contributed to the fast phonon transport, which favored heat transport.
  • loading
  • Ganguli S,Roy A K,Anderson D P. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites[J]. Carbon, 2008, 46(5):806-817.
    Fu S Y, Feng X Q, Lauke B, et al. Effect of particle size,particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer[J]. Composites Part B Engineering, 2008, 39(6):933-961
    Omrani A, Simon L C, Rostami A A. The effects of alumina nanoparticle on the properties of an epoxy resin system[J]. Materials Chemistry & Physics, 2009, 114(1):145-150.
    S J Park, Jin F L, Lee J R. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil[J]. Materials Science & Engineering A, 2004, 374(1-2):109-114.
    Song S H,Park K H,Kim B H, et al. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization[J]. Advanced Materials, 2013, 25(5):732-737.
    Teng C C, Ma C C, Chiou M. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites[J]. Materials Chemistry and Physics, 2011, 126(3):722-728.
    Yang K, Gu M. Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide[J]. Composites Part A Applied Science & Manufacturing, 2010, 41(2):215-221.
    Teng C C, Ma C C M, Chiou K C, et al. Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride[J]. Composites Part B, 2012, 43(2):265-271.
    Zhou T, Wang X, Liu X, et al. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler[J]. Carbon, 2010, 48(4):1171-1176.
    Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites:A review[J]. Progress in Polymer Science, 2011, 36(7):914-944.
    Chen G. Thermal conductivity and ballistic phonon transport in superlattices[C]//Aps March Meeting. APS March Meeting Abstracts, 1998.
    Du F P, Tang H, Huang D Y. Thermal conductivity of epoxy resin reinforced with magnesium oxide coated multiwalled carbon nanotubes[J]. International Journal of Ploymer Science, 2013, (15):9714-9722.
    He D, Bozlar M, Genestoux M, et al. Diameter- and length-dependent self-organizations of multi-walled carbon nanotubes on spherical alumina microparticles[J]. Carbon, 2010, 48(4):1159-1170.
    Teng C C, Ma M Chen-Chi, Lu C H, et al. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites[J]. Carbon, 2011, 49(15):5107-5116.
    H Im, Kim J. Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite[J]. Carbon, 2012, 50(15):5429-5440.
    Guan F L, Gui C X, Zhang H B, et al. Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide[J]. Composites Part B, 2016, 98:134-140.
    Yu A,Ramesh P,Sun X. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J]. Advanced Materials, 2008, 20(24):4740-4744.
    Michael J McAllister, Je-Luen Li, Douglas H. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry Materials, 2007, 19(18):4396-4404
    Yang P,Li X,Zhao Y. Effect of triangular vacancy defect on thermal conductivity and thermal rectification in graphene nanoribbons[J]. Physics Letter A,2013, 377:2141-2146.
    Huang X, Iizuka Tomonori,Jiang PK. Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites[J]. J Physical Chemistry C, 2012, 116(25):13629-13639.
    Hong JP, Yoon S W, Wang T H. High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers[J]. Thermochimica Acta, 2012, 537(11):70-75.
    Kim J,Im H,Kim J M. Thermal and electrical conductivity of Al(OH)3 covered graphene oxide nanosheet/epoxy composites[J]. Journal of Materials Science, 2012, 47(3):1418-1426.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(357) PDF Downloads(167) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return