Supporting Information

A three-dimensional polyoxometalate/graphene aerogel as a highly efficient and recyclable absorbent for oil/water separation

Sen Wang¹, Xiao Wang^{1,3}, Xiaoyu Shi¹, Caixai Meng¹, Chenglin Sun^{2,*}, Zhong-Shuai Wu^{1,2,*}*

(1. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; 2. Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; 3. University of Chinese Academy of Sciences, Beijing, 100049, China)

Corresponding author: Chenglin Sun, E-mail: clsun@dicp.ac.cn Zhong-Shuai Wu, E-mail: wuzs@dicp.ac.cn

Synthetic methods	Synthesis condition	Adsorption	Refs.
		capacity	
		(g g ⁻¹)	
chemical reduction	25 °C, 6 h, N ₂ H ₄ and POM	100-208	This
			work
	90 °C, 6 h, FeSO ₄ and NH ₃	13-27	[1]
	95 °C, 48 h, L-phenylalanine	107-258	[2]
	80 °C, 24 h, ethylenediamine	120-250	[3]
	70 °C, 4 h, ascorbic acid	120-200	[4]
	80 °C, 8 h, HI	34-112	[5]
	95 °C, 12 h, N ₂ H ₄	15-80	[6]
	60 °C, 8 h, ascorbic acid and	154-325	[7]
	HI		[7]
hydrothermal reduction	90 °C, 10 h, N ₂ H ₄	10-37	[8]
	180 °C, 24 h, NH ₃ ·H ₂ O	20-86	[9]
	160 °C, 10 h, polyvinylidene	20-70	[10]
	fiuoride		
	120 °C, 12 h, CNT and	100-270	[11]
	ethylenediamine		
	180 °C, 6 h	52-68	[12]
	95 °C, 1 h, ascorbic acid	58-97	[13]
high temperature	180 °C, 6 h, air	60-140	[14]
treatment	750 °C, 3 h, N ₂	187-350	[15]
	800 °C, 1 h, Ar	110-320	[16]
	1000 °C, 2 h, N ₂	134-283	[17]

Table S1. Comparison of absorption capacity of POM-GAs with the reported GAs obtained by different methods

Adsorbent materials	Adsorption Capacity	Refs.
	(g g ⁻¹)	
POM-GAs	100-208	This work
carbonaceous nanofiber aerogel	40-115	[18]
biomass-derived synthetic polymer aerogel	20-40	[19]
silylated wood sponge	16-41	[20]
silylated chitosan aerogel	31-63	[21]
polysiloxane coated PU sponge	15-25	[22]
fiber/silica composite aerogel	up to 16	[23]
silylated bacterial cellulose aerogel	86-185	[24]
silylated nanocellulose sponge	49-102	[25]

Table S2. Summary of absorption capacity of POM-GAs with other 3D porous absorbents

References

- [1] Cong H-P, Ren X-C, Wang P, et al. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process [J]. ACS Nano, 2012, 6(3):2693-2703.
- [2] Xu L, Xiao G, Chen C, et al. Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction [J]. Journal of Materials Chemistry A, 2015, 3(14):7498-7504.
- [3] Li J, Li J, Meng H, et al. Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids [J]. Journal of Materials Chemistry A, 2014, 2(9):2934-2941.
- [4] Liu T, Huang M, Li X, et al. Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids [J]. Carbon, 2016, 100:456-464.
- [5] Hong J-Y, Sohn E-H, Park S, et al. Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel [J]. Chemical Engineering Journal, 2015, 269:229-235.
- [6] Li Z, Xu Z, Liu Y, et al. Multifunctional non-woven fabrics of interfused graphene fibres [J]. Nature Communications, 2016, 7:13684.
- [7] Chen X, Lai D, Yuan B, et al. Tuning oxygen clusters on graphene oxide to synthesize graphene aerogels with crumpled nanosheets for effective removal of organic pollutants [J]. Carbon, 2019, 143:897-907.
- [8] Niu Z, Chen J, Hng HH, et al. A leavening strategy to prepare reduced graphene oxide foams [J]. Advanced Materials, 2012, 24(30):4144-4150.
- [9] Bi H, Xie X, Yin K, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents
 [J]. Advanced Functional Materials, 2012, 22(21):4421-4425.
- [10] Li R, Chen C, Li J, et al. A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels [J]. Journal of Materials Chemistry A, 2014, 2(9):3057-3064.
- [11] Wan W, Zhang R, Li W, et al. Graphene-carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes [J]. Environmental Science-Nano, 2016, 3(1):107-113.
- [12] Hu K, Szkopek T, Cerruti M. Tuning the aggregation of

graphene oxide dispersions to synthesize elastic, low density graphene aerogels [J]. Journal of Materials Chemistry A, 2017, 5(44):23123-23130.

- [13] Wang X, Peng G, Chen M, et al. Reduced graphene oxide composites and its real-life application potential for in-situ crude oil removal [J]. Chemosphere, 2020, 249:126141.
- [14] Zhu H, Chen D, An W, et al. A robust and cost-effective superhydrophobic graphene foam for efficient oil and organic solvent recovery [J]. Small, 2015, 11(39):5222-5229.
- [15] Wang F, Wang Y, Zhan W, et al. Facile synthesis of ultra-light graphene aerogels with super absorption capability for organic solvents and strain-sensitive electrical conductivity [J]. Chemical Engineering Journal, 2017, 320:539-548.
- [16] Wang C, Yang S, Ma Q, et al. Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds [J]. Carbon, 2017, 118:765-771.
- [17] Li L, Li B, Zhang J. Dopamine-mediated fabrication of ultralight graphene aerogels with low volume shrinkage [J]. Journal of Materials Chemistry A, 2016, 4(2):512-518.
- [18] Liang H-W, Guan Q-F, Chen L-F, et al. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications [J]. Angewandte Chemie-International Edition, 2012, 51(21):5101-5105.
- [19] Jiang J, Zhang Q, Zhan X, et al. Renewable, biomass-derived, honeycomblike aerogel as a robust oil absorbent with two-way reusability [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11):10307-10316.
- [20] Guan H, Cheng Z, Wang X. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents [J]. ACS Nano, 2018, 12(10):10365-10373.
- [21] Yi L, Yang J, Fang X, et al. Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from water [J]. Journal of Hazardous materials, 2020, 385:121507.
- [22] Zhu Q, Chu Y, Wang Z, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material [J]. Journal of Materials Chemistry A, 2013, 1(17):5386-5393.

- [23] Karatum O, Steiner SA, III, Griffin JS, et al. Flexible, mechanically durable aerogel composites for oil capture and recovery [J]. ACS Applied Materials & Interface, 2016, 8(1):215-224.
- [24] Sai H, Fu R, Xing L, et al. Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation

[J]. ACS Applied Materials & Interface, 2015, 7(13):7373-7381.

[25] Zhang Z, Sebe G, Rentsch D, et al. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water [J]. Chemistry of Materials, 2014, 26(8):2659-2668.