Supporting Information

Molecular-scale grinding of uniform small-size graphene flakes for use as lubricating oil additives

Yufen Guo^{1,2}, Huitao Zhang², Yuewen Liu², Xufeng Zhou^{1*}, Zhaoping Liu^{1,2*}

1 Advanced Li-ion Battery Engineering Laboratory of Zhejiang Province, Key Laboratory of Graphene Technologies and Applications of Zhejiang Province and CAS Engineering Laboratory for Graphene, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Zhejiang, P. R. China

2 National Graphene Innovation Center, Zhejiang, P. R. China

Correspondence:

Corresponding Author zhouxf@nimte.ac.cn; liuzp@nimte.ac.cn The FTIR spectrum of SG after chemical treatment in the mixture of H_2SO_4/H_2O_2 was presented in Fig. S1 to illustrate the existence of -SO₃H. The peak at 1573 cm⁻¹ is assigned to the stretching vibration of C=C in basal plane of SG. And consistent with the literature, the three peaks at 1137 cm⁻¹, 1065 cm⁻¹ and 832 cm⁻¹ can confirm the presence of -SO₃H, a functional group which could be used for grafting T151 according to the former literature.

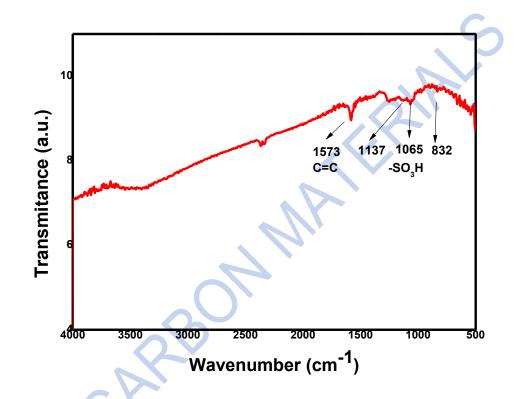


Figure S1 The FTIR spectrum of SG after chemical treatment in the mixture of H₂SO₄/H₂O₂

SEM results in Fig. S2 show that the degree of graphene exfoliation prepared in this work is affected by the mass ratio of $Ca(OH)_2$ to graphite. Four different ratios of $Ca(OH)_2$ to graphite, i.e. 4:1, 3:1, 1:1, and 1:2 were employed in our experiments. It can be seen that the exfoliation degree of graphene is similar when the ratio is 4:1 and 3:1, while the exfoliated graphene is thicker when the ratio is 1:1 and 1:2.

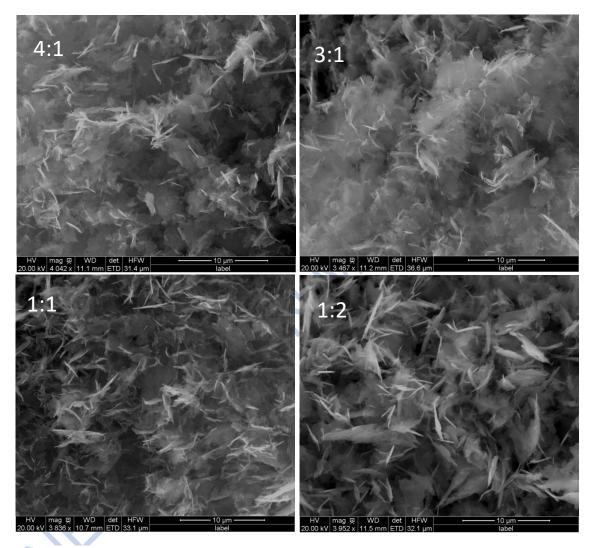


Figure S1 SEM images of graphene prepared with different ratio of Ca(OH)2 to graphite