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Figure S1. (a) SEM image and (b) TEM image of NPNs. 
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Figure S2. FTIR spectrum of (a) indole-NPNs; (b) EDOT-SPNs.  

 

For indole-NPNs, the peaks at ~1607 and 1455 cm-1 represent benzene ring skeleton 

vibration, while the peaks at ~2932 and 2855 cm-1 confirm the existence of methylene. 

For EDOT-SPNs, the peaks at 1494 and 1361 cm-1 were attributed to C–C or C=C 

stretching of quinoidal structure and ring stretching of thiophene ring, respectively; the 

peak at 1080 cm-1 originated from C–O–C bond stretching in the ethylene dioxy group; 

peaks at 937 and 842 cm-1 corresponds to C–S bond in the thiophene ring while the 

peaks at ~2925 and 2867 cm-1 confirm the existence of methylene. 
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Figure S3. 13C solid state NMR spectrum of (a) indole-NPNs; (b) EDOT-SPNs. 

 

13C SS-NMR spectra of indole-NPNs showed resonance peaks near 135.9 and 127 

ppm correspond to substituted aromatic carbon; while the peaks near 124 and 114 ppm 

correspond to non-substituted aromatic carbon, and the resonance peaks near 31 ppm 

is assigned to carbon in methylene linker formed after knitting reaction [1]. 

13C SS-NMR spectra of EDOT-SPNs showed resonance peaks near 140.5 and 120.1 

ppm correspond to substituted aromatic carbon and non-substituted aromatic carbon, 

respectively; and the resonance peaks at 66 and 31 ppm are assigned to methylene linker 

in and out of the EDOT ring. 
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Figure S4. High-resolution XPS spectrum of N1s for (a) indole-NPNs and (b) indole-

NCNs; S2p for (c) EDOT-SPNs and (d) EDOT-SCNs. 

 

XPS result further revealed the chemical composition of indole-NPNs. As expected, 

indole-NPNs displayed only one peak at 399.8 eV, corresponding to N atoms within the 

pentagonal ring of indole [2], and the nitrogen content is 7.5 at%. Following heat 

treatment at 800°C, four distinct nitrogen species can be observed, indicating that some 

N atoms within the pentagonal ring of pyrrole have been converted into other types of 

nitrogen. This observation is consistent with the behavior seen in pyrrole-based 

materials. And the nitrogen content of indole-NCNs is still as high as 5.3 at%. 

The XPS results reveal the chemical composition of EDOT-SPNs, with a sulfur 

content of 7.80 at%. As expected, the fine-scanned high-resolution S 2p spectrum of 

EDOT-SPNs displays the S 2p1/2 and S 2p3/2 doublet detected at 164.9 eV and 163.7 eV, 

with an intensity ratio of about 2:3, corresponding to C-S-C S 2p3/2 and C-S-C S 2p1/2, 

respectively [3, 4]. This result confirms the successful incorporation of EDOT into the 

polymer. The peak at 168.7 eV is related to -C-SOx-C- group [5]. Upon high-temperature 

treatment at 800℃, the S 2p XPS spectrum for EDOT-SCNs is similar in shape to that 
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of EDOT-SPNs, mainly reflected in the similar relative proportions of C-S-C covalent 

bonds. However, there are noticeable differences between the two samples. First, the 

proportion of the C-SOx-C peak in EDOT-SCNs is significantly reduced after high-

temperature treatment, which is probably due to the percentage of C-S-C and C-SOx-C 

is temperature-dependent [6]. As the calcination temperature increases, the proportion 

of C-S-C increases, while the C-SOx-C group becomes unstable and may decrease or 

even disappear. Secondly, after high-temperature treatment, the atomic percentage of 

sulfur decreases to 4.92 at% in EDOT-SCNs. This reduction can be attributed to the 

atomic rearrangement and condensation reactions of the carbon skeleton during the 

high-temperature treatment process, which leads to the escape of sulfur atoms from the 

carbon framework. 
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Figure S5. SEM images of (a) indole-NPNs and (b) EDOT-SPNs. 

 

 

 

 

 

Figure S6. SEM images of (a) indole-NCNs and (b) EDOT-SCNs. 
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Figure S7. TGA curves of (a) NPNs; (b) indole-NPNs and (c) EDOT-SPNs 
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Figure S8. (a) XRD patterns; (b) Raman spectra of NCNs and NPNs 

 

 

 

 

 

 

 

 

 

Figure S9. (a) XRD patterns; (b) Raman spectra of ANCNs samples. 
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Figure S10. (a)-(b) SEM images of NPNs at different magnification. 

 

 

 

 

 

 

Figure S11. TEM image of NPNs. 
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Figure S12. (a)-(b) SEM images of NCNs at different magnification. 

 

 

 

 

 

Figure S13. HRTEM image of NCNs. 
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Figure S14. SEM images of (a) ANCNS-2; (b) ANCNS-3; (c) ANCNS-4. 
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Figure S15. Performance of lithium-ion batteries based on the NCNs: (a) CV curves at 

a scan rate of 0.2 mV s-1; (b) discharge/ charge voltage profiles; (c) long-term cycling 

stability at 5 A g-1; (d) rate capability at varied current densities from 0.1 to 5 A g-1. 
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Figure S16. Comparison of the rate capabilities for NCNs// ANCNs LICs. 
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