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Electrochemical measurements:

The working electrodes were prepared by mixing obtained sample powders, super P and

polytetrafluoroethylene (PTFE) with a mass ratio of 75:20:5 in ethanol to form a

homogeneous slurry. Then the slurry was coated onto the nickel current collector (with a size

of around 1 cm ×1 cm), and finally dried at 100 ℃ for 12 h in a vacuum oven. The mass

loadings of active materials in various electrodes were ~1.0, 4.2, 7.8, 12.3 and 17.7 mg·cm−2,
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respectively. In a three-electrode system, the as-prepared work electrode was clamped by a

platinum electrode clip, with platinum foil as a counter electrode and Hg/HgO as a reference

electrode. The cyclic voltammetry (CV), the galvanostatic charge-discharge (GCD) and the

electrochemical impedance spectroscopy (EIS) tests were carried out in a 6 M KOH aqueous

solution. The EIS measurements were evaluated in the frequency range from 100 kHz to 0.01

Hz at open circuit potential. The symmetric supercapacitors were assembled 1 M Na2SO4

aqueous solution using two identical work electrodes. The electrochemical measurements of

symmetric supercapacitor were performed in a voltage window of 1.6 V, with 1 M Na2SO4

aqueous solution.

The specific capacitance (CG, F g-1) of the electrode material was calculated from GCD

discharge curve:

G
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(1)

Where I (A), Δt (s), ΔV (V), and m (g) are the constant discharge current, the discharge time,

the discharge voltage, and the mass of the active material in the working electrode,

respectively.

The areal specific capacitances based on the specific surface area (CSSA, µF cm-2) or

geometric area of electrode (CS, F cm-2) were calculated as follow:

100 /SSA G SSAC C A  (2)

A G mC C A (3)

Where ASSA (m2 g−1) and Am (g cm−2) are the specific surface area and mass loading of active

materials.
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The complex form of capacitance C(w) is dependent on real part the cell capacitance

Cʹ(w), the imaginary part Cʺ(w) related to the losses of energy dissipation and frequency,

which is defined as follows:
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Where Z’(w) and Z”(w) are the respective real and imaginary parts of the complex impedance

Z(w). w is the angular frequency which is given by w=2πf.

The energy density (E, Wh kg-1) and power density (P, W kg-1) of the symmetric

supercapacitor were calculated based on the following equations:
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Where C is the specific capacitance based on the total mass or geometric area of active

materials in two-electrode system. ΔV (V) and Δt (h) are the voltage after the Ohmic drop and

the discharge time of the cell, respectively.
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Fig. S1 photograph of metaplexis japonica shell.

Fig. S2 (a) SEM and (b) TEM images of CM

Metaplexis Japonica shell
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Table S1 Pore structure parameters of CM, PCM and NPCM samples.

Sample
SBET

[m2 g–1]

V T

[cm3 g–1]

V micro.

[cm3 g–1]

Vmeso.

[cm3 g–1]

CM 50.6 0.042 0.038 0.004

PCM 317.0 0.190 0.163 0.027

NPCM 956.3 0.876 0.845 0.031

Fig. S3 High-resolution N 1s XPS spectrum of (a) PCM and (b) CM. Note: N-X, N-Q, N-5,

N-6 denote oxidic, graphitic, pyrrolic, and pyridinic, respectively.
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Fig. S4 CV curves of NPCM at various scan rates.
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Table S2 Comparison of the specific capacitance and specific surface area of NPCM electrode

with other biomass-derived heteroatom-doped carbon materials.

Materials
Cg

(F g–1)
SBET

(m2 g–1)
Ca

(µF cm–2)
Heteroatom Ref.

Hierarchical porous
hollow-activated carbons

350 at 0.2 A g−1 1641 21.3 N, O [1]

Nitrogen-doped
high-surface-area porous carbon

335 at 1 A g−1 1751 19.1 N [2]

Graphene-like porous carbon
nanosheets

294 at 1 A g−1 1051 28.0 N, S [3]

Nitrogen-doped porous carbon
nanosheets

324
at 0.05 A g−1

2093 15.5 N [4]

Heteroatom-doped sheet-like
and hierarchical porous carbon

406 at 0.2 A g−1 1535 26.4 N, O [5]

N-O-S co-doped hierarchical
porous carbons

301 at 0.5 A g−1 1307 23.0 N, O, S [6]

N/S-doped porous carbon 132 at 1 A g−1 1575 8.4 N, S [7]

Flexible 3D interconnected
carbon

357 at 0.1 A g−1 1456.4 24.5 B, N, O [8]

N/S co-doped carbon material 222 at 1 A g−1 1122.6 19.8 N, S [9]

Nitrogen-graphitic hierarchical
porous nanosheets

237 at 0.5 A g−1 818.6 28.9 N [10]

Dual-doped carbon frameworks 435 at 0.5 A g−1 2000 21.8 N, O [11]

O-N-S co-doped hierarchical
porous carbons

576 at 1 A g−1 2650 21.7 O, N, S [12]

N, S co-doped
carbon

317 at 1 A g−1 2206 14.4 N, S [13]

P/N co-doped porous carbon 568 at 1 A g−1 2675 21.2 N, P [14]

Activated
porous carbon

317 at 1 A g−1 1247.6 25.4 N, P [15]

N-porous carbon 345 at 0.2 A g−1 905.9 38.1 N [16]

N-porous carbon 318 at 0.2 A g−1 3006 10.6 N [17]

Active carbon 328 at 1 A g−1 2690 12.2 O, N, S [18]

NPCM 457 at 2 A g−1 956.3 47.8 N This work
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Table S3 Comparison of the specific capacitances and specific surface area of NPCM electrode with other

biomass-derived activated carbon materials.

Materials
Cg

(F g–1)
SBET

(m2 g–1)
Ca

(µF cm–2)
Ref.

Porous carbon 143 at 0.2 A g−1 389 36.8 [19]

Three-dimensional carbon nanosheets 508 at 1 A g−1 1612 31.5 [20]

Activated carbon 245 at 0.1 A g−1 1958 12.5 [21]

Hierarchical porous carbon nanosheets 300 at 0.1 A g−1 2687 11.2 [22]

Graphene-like
porous active carbon

340 at 0.5 A g−1 1015 33.5 [23]

Porous carbon nanosheets 350 at 0.1 A g−1 1612 21.7 [24]

Porous carbon 413 at 1 A g−1 3151 13.1 [25]

Porous carbon 427 at 0.5 A g−1 2818 15.2 [26]

Activated carbon 294 at 1 A g−1 2560 11.5 [27]

Activated carbon 247 at 1 A g−1 1427.8 17.3 [28]

Activated carbon fiber 415 at 0.5 A g−1 2289 18.1 [29]

Porous carbon 390 at 1 A g−1 2131 18.3 [30]

Active carbon 167 at 1 A g−1 911.92 18.3 [31]

Active carbon 161 at 0.2 A g−1 682 23.6 [32]

Active carbon 406 at 0.5 A g−1 2757.6 14.7 [33]

Active carbon 550 at 0.2 A g−1 1265 43.5 [34]

Active carbon 254 at 0.5 A g−1 2208 11.5 [35]

Active carbon 359 at 0.5 A g−1 3089 11.6 [36]

Active carbon 285 at 0.5 A g−1 1243.8 22.9 [37]

NPCM 457 at 2 A g−1 956.3 47.8 This work
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Table S4 EIS fitting results.

Sample Rs (m) Rct (m) Cdl (mF) WO-R WO-T WO-P

CM 83 120 2.27 0.08 0.055 0.448

PCM 58 50 3.53 0.174 0.031 0.484

NPCM 57 11 6.35 0.07 0.018 0.475

Fig. S5 CV curves of NPCM with various mass loading of (a) 4.2, (b) 7.8, (c) 12.3, and (d)

23.9 mg cm−2, respectively.
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Fig. S6 GCD curves of NPCM at mass loading of 17.7 mg cm−2.

Fig. S7 GCD curves of NPCM with various mass loading of (a) 4.2, (b) 7.8, (c) 12.3, and (d)

23.9 mg cm−2, respectively.
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Fig. S8 (a) Nyquist plots and (b) Frequency response of the normalized capacitance of NPCM

with different mass loading of 1.0, 4.2, 7.8, 12.3, 17.7 and 23.9 mg cm−2.

.
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Fig. S9 Areal capacitance (based on the geometric area of electrode) of the NPCM electrodes

with different mass loadings.

Fig. S10 Gravimetric capacitance of the NPCM//NPCM at different current density.
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