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Fig. S1 XRD patterns of the NBCC sample before washing with HCl.
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Fig. S2 (a) XPS survey spectra of BCC and NBCC.
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Fig. S3 Galvanostatic discharge-charge profiles of BCC at 0.05 A g-1.
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Fig. S4 The SEM images of NBCC (a) after 100 cycles, and (b) after 1000 cycles.
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Fig. S5 (a) Rate capability, and (b) Long cycling performance at 2.0 A g-1 of NBCC-L and

NBCC-H electrodes.
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Fig. S6 SEM images of (a) NBCC-L and (b) NBCC-H.
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Fig. S7 (a) Nitrogen adsorption-desorption isothermal curves, and (b) DFT pore size

distribution of NBCC-L and NBCC-H.
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Fig. S8 (a) XPS survey spectra of NBCC-L and NBCC-H. (b) atomic contents of N/O

elements of BCC, NBCC, NBCC-L and NBCC-H.
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Fig. S9 C 1s spectra of (a) NBCC-L and (b) NBCC-H.
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Fig. S10 N 1s spectra of (a) NBCC-L and (b) NBCC-H.
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Fig. S11 O 1s spectra of (a) NBCC-L and (b) NBCC-H.
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Fig. S12 XRD pattern of (a) NBCC-L and (b) NBCC-H.
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Fig. S13 Raman spectra of (a) NBCC-L and (b) NBCC-H.
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Fig. S14 (a) CV curves at different scan rates, (b) Fitted line between log(i) and log(v), (c)

Normalized capacitive contribution ratio of BCC at different scan rates.
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Fig. S15 (a) GITT curves and (b) the schematic illustration for the GITT calculation method

of BCC and NBCC.

The GITT profiles to investigate the K-ion diffusion coefficient (Dk) during cycling via

discharging/charging at 0.03 A g−1 for 30 min followed by an open-circuit relaxation for 180

min. The Dk value can be calculated according to the Fick’s second law and the equation (S1):
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where τ is the pulse time (s), mB is the mass of the active materials, Mb is the molar mass of

the active material, VM represents the molar volume of the active material, S is the geometric

area of the electrode, and ΔEs and ΔEt are defined as shown in Figure S12b.
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Fig. S16 Electrochemical performance of NPC as PIBs cathode in half cells. (a) Galvonastatic

discharge-charge profiles of NPC at 0.1 A g-1; (b) Rate capability of NPC (The preparation

process of NPC sample can be found from ref. 1).[1]
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Fig. S17 (a) Representative GCD profiles at different current densities, and (b) cycling

stability at 25 A g-1 of NBCC//NPC PIHC.
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Table S1. Physical parameters of BCC, NBCC, NBCC-L and NBCC-H samples from XRD

patterns.

Highly disordered Pseudo-graphitic

2θ (°) d002(nm) Area (%) 2θ (°) d002(nm) Area (%)

BCC 21.84 0.406 37.01 23.65 0.376 62.99

NBCC-L 21.74 0.408 54.24 23.60 0.377 46.59

NBCC 21.60 0.410 64.97 23.54 0.378 35.03

NBCC-H 21.55 0.412 69.03 23.42 0.379 30.97
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Table S2. Carbon bonding analysis of BCC, NBCC, NBCC-L, NBCC-H.

Binding

Energy

(eV)

Carbon

Bonding

Concentration (%)

BCC NBBC-L NBBC NBBC-H

284.4 C=C 76.5 68.15 63.44 57.7

285.9 C-C/C-N 10.69 17.61 24.33 25.93

286.4 C-O 6.75 7.31 7.43 7.34

288.1 C=O 2.28 4.45 2.75 7.04

289.6 COOH 3.79 2.48 2.06 1.99
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Table S3. Comparisons of electrochemical performance of NBCC with other carbon anodes

for PIBs.

Anode Materials Rate capability

NBCC (This work)

499 mAh g-1 at 0.05 A g-1

405 mAh g-1 at 0.1 A g-1

347 mAh g-1 at 0.2 A g-1

278 mAh g-1 at 0.5 A g-1

231 mAh g-1 at 1.0 A g-1

194 mAh g-1 at 2.0 A g-1

134 mAh g-1 at 5.0 A g-1

87 mAh g-1 at 10.0 A g-1

N/S co-doped soft carbon[2]

325mAh g-1 at 0.1 A g-1

270 mAh g-1 at 0.2 A g-1

241 mAh g-1 at 0.5 A g-1

209 mAh g-1 at 1.0 A g-1

160 mAh g-1 at 2.0 A g-1

115 mAh g-1 at 5.0 A g-1

Activated carbon[3]

209 mAh g-1 at 0.1 A g-1

159 mAh g-1 at 0.2A g-1

114 mAh g-1 at 0.4 A g-1

72 mAh g-1 at 0.8 A g-1

30 mAh g-1 at 1.0 A g-1

N-doped hollow carbon[4]

307mAh g-1 at 0.05 A g1

265 mAh g-1 at 0.1 A g-1

246 mAh g-1 at 0.2 A g-1

225 mAh g-1 at 0.4 A g-1

213mAh g-1 at 0.6 A g1

206 mAh g-1 at 0.8 A g1

200 mAh g-1 at 1.0 A g1
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Nano-size porous carbon spheres[5]

208mAh g-1 at 0.05 A g1

182 mAh g-1 at 0.1A g-1

141 mAh g-1 at 0.2 A g-1

104 mAh g-1 at 0.5 A g-1

81 mAh g-1 at 1.0 A g1

51 mAh g-1 at 2.0 A g1

N/O co-doped carbon hollow

multihole bowls[6]

377 mAh g-1 at 0.1 A g-1

305 mAh g-1 at 0.2 A g-1,

249 mAh g-1 at 0.5 A g-1,

216 mAh g-1 at 1.0 A g1,

182mAh g-1 at 2.0 A g1

honeycomb-like N-doped carbon[7]

367 mAh g-1 at 0.05 A g-1,

324 mAh g-1 at.0.1 A g-1,

248 mAh g-1 at 0.2 A g-1,

210 mAh g-1 at 0.5A g-1

162 mAh g-1 at 1.0A g-1

123 mAh g-1 at 2.0A g-1

103 mAh g-1 at 5.0A g-1

91 mAh g-1 at 10.0A g-1

3D porous carbon[8]

175 mAh g-1 at 0.05 A g-1,

150 mAh g-1 at 0.1 A g-1,

118 mAh g-1 at 0.2 A g-1,

93 mAh g-1 at 0.4 A g-1,

70 mAh g-1 at 0.8 A g-1,

N-doped soft carbon [9]

293 mAh g-1 at 0.05 A g-1,

266 mAh g-1 at 0.1 A g-1,

246 mAh g-1 at 0.2 A g-1,

216 mAh g-1 at 0.5 A g-1,

194 mAh g-1 at 1.0 A g-1.
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