## **Supporting Information**

Salt-assisted in-situ formation of N-doped porous carbons for boosting  $k^+$  storage capacity and cycling stability

Wen-zhe Zhang, Huan-lei Wang \*, Ran-xia Liao, Wen-rui Wei, Xue-chun Li, Shuai Liu, Ming-hua Huang, Zhi-cheng Shi, Jing Shi \*

(School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China)

Corresponding author: E-mail: huanleiwang@gmail.com (H. Wang) E-mail: shijing@ouc.edu.cn (J. Shi)

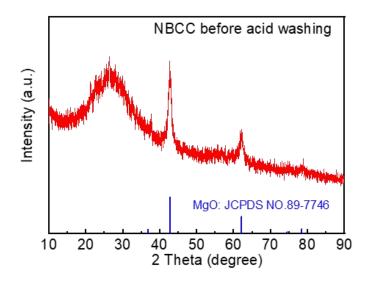



Fig. S1 XRD patterns of the NBCC sample before washing with HCl.

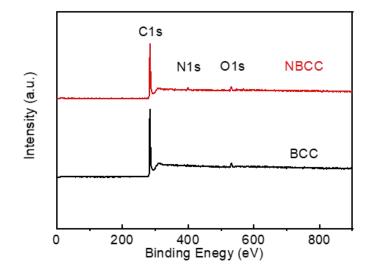



Fig. S2 (a) XPS survey spectra of BCC and NBCC.

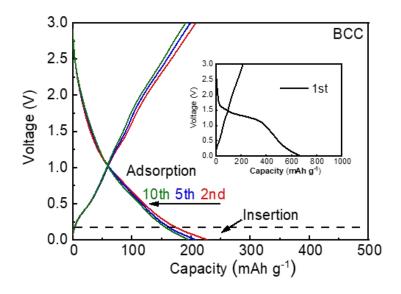



Fig. S3 Galvanostatic discharge-charge profiles of BCC at  $0.05 \text{ A g}^{-1}$ .

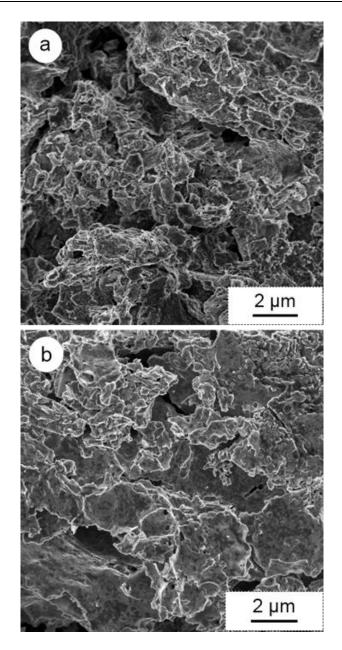
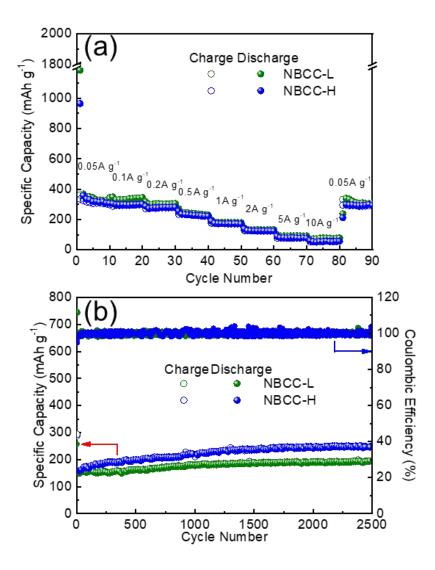




Fig. S4 The SEM images of NBCC (a) after 100 cycles, and (b) after 1000 cycles.



**Fig. S5** (a) Rate capability, and (b) Long cycling performance at 2.0 A g<sup>-1</sup> of NBCC-L and NBCC-H electrodes.

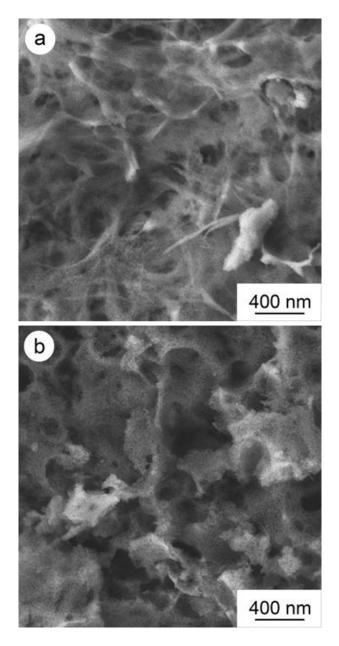



Fig. S6 SEM images of (a) NBCC-L and (b) NBCC-H.

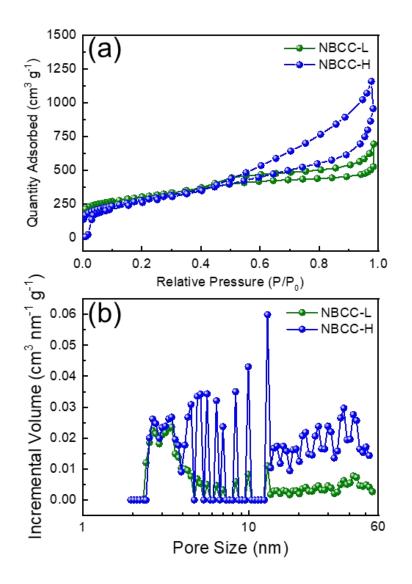



Fig. S7 (a) Nitrogen adsorption-desorption isothermal curves, and (b) DFT pore size distribution of NBCC-L and NBCC-H.

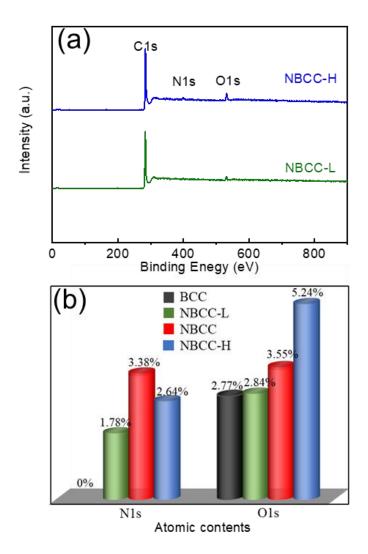



Fig. S8 (a) XPS survey spectra of NBCC-L and NBCC-H. (b) atomic contents of N/O elements of BCC, NBCC, NBCC-L and NBCC-H.

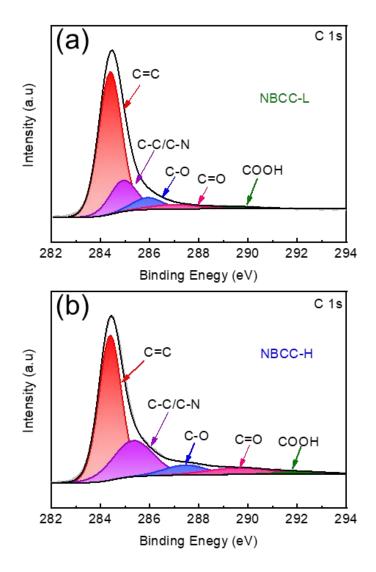



Fig. S9 C 1s spectra of (a) NBCC-L and (b) NBCC-H.

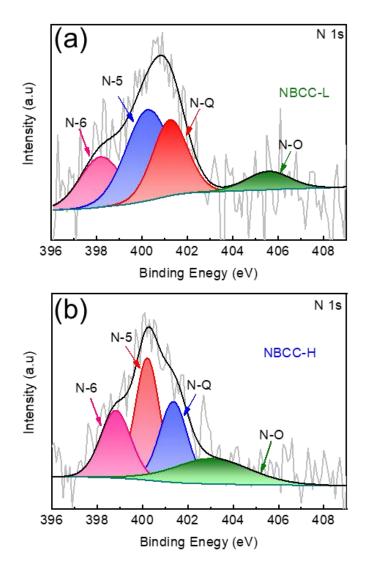



Fig. S10 N 1s spectra of (a) NBCC-L and (b) NBCC-H.

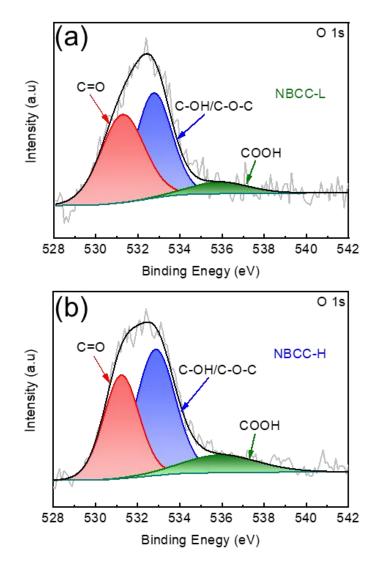



Fig. S11 O 1s spectra of (a) NBCC-L and (b) NBCC-H.

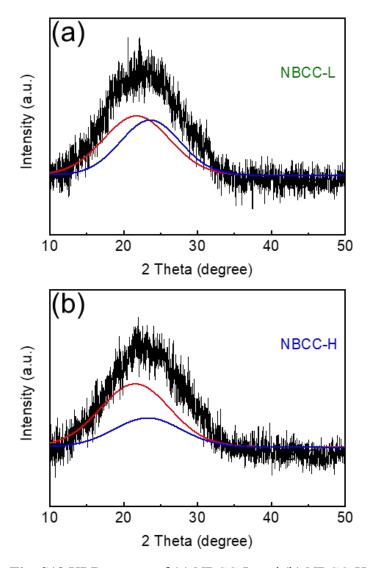



Fig. S12 XRD pattern of (a) NBCC-L and (b) NBCC-H.

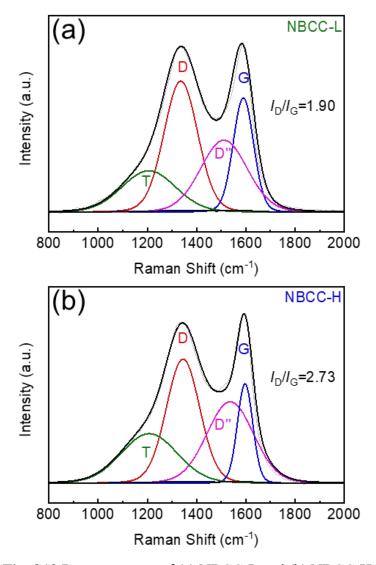



Fig. S13 Raman spectra of (a) NBCC-L and (b) NBCC-H.

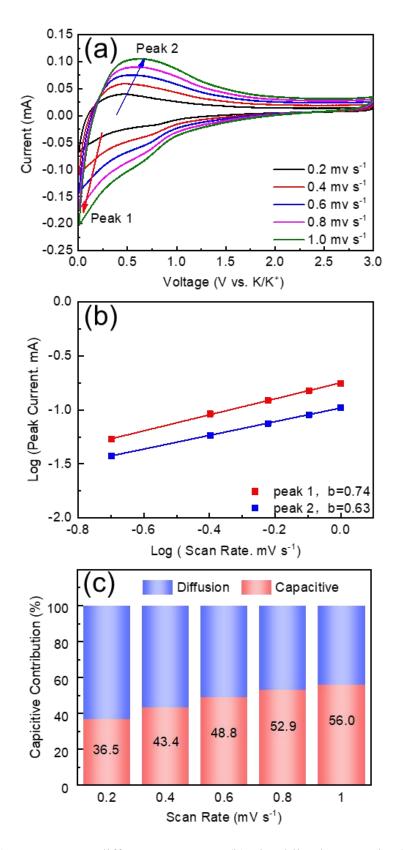
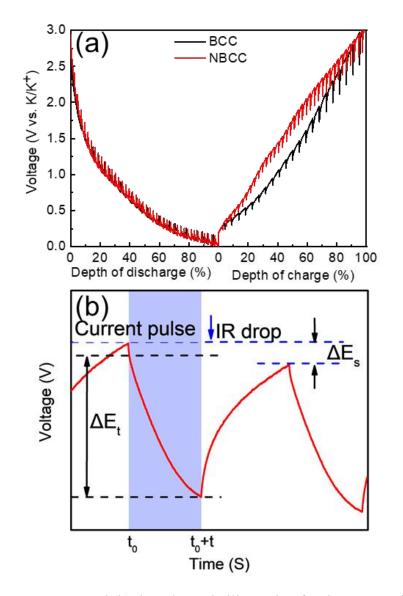




Fig. S14 (a) CV curves at different scan rates, (b) Fitted line between log(i) and log(v), (c) Normalized capacitive contribution ratio of BCC at different scan rates.



**Fig. S15** (a) GITT curves and (b) the schematic illustration for the GITT calculation method of BCC and NBCC.

The GITT profiles to investigate the K-ion diffusion coefficient ( $D_k$ ) during cycling via discharging/charging at 0.03 A g<sup>-1</sup> for 30 min followed by an open-circuit relaxation for 180 min. The  $D_k$  value can be calculated according to the Fick's second law and the equation (S1):

$$D_{Na} = \frac{4}{\pi\tau} \left(\frac{m_B V_M}{M_b S}\right)^2 \left(\frac{\Delta E_s}{\Delta E_t}\right)^2 \tag{S1}$$

where  $\tau$  is the pulse time (s),  $m_B$  is the mass of the active materials,  $M_b$  is the molar mass of the active material,  $V_M$  represents the molar volume of the active material, S is the geometric area of the electrode, and  $\Delta E_s$  and  $\Delta E_t$  are defined as shown in Figure S12b.

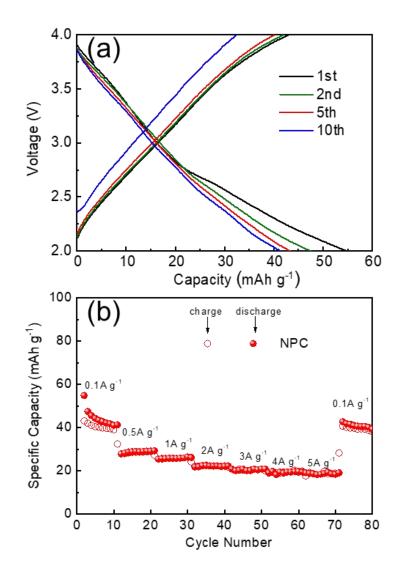



Fig. S16 Electrochemical performance of NPC as PIBs cathode in half cells. (a) Galvonastatic discharge-charge profiles of NPC at 0.1 A g<sup>-1</sup>; (b) Rate capability of NPC (The preparation process of NPC sample can be found from ref. 1).<sup>[1]</sup>

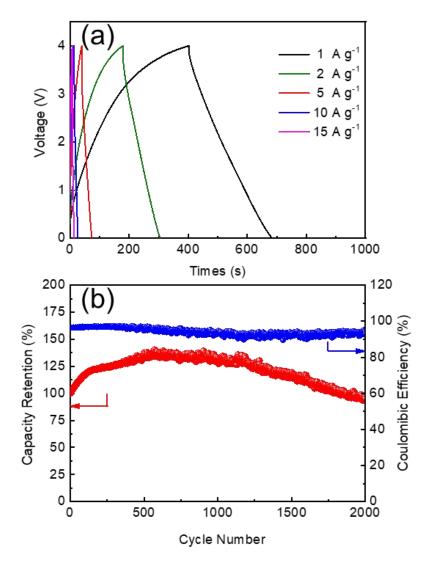



Fig. S17 (a) Representative GCD profiles at different current densities, and (b) cycling stability at 25 A  $g^{-1}$  of NBCC//NPC PIHC.

|        | Highly disordered |                       |          | Pseudo-graphitic |                       |          |
|--------|-------------------|-----------------------|----------|------------------|-----------------------|----------|
|        | 2θ (°)            | d <sub>002</sub> (nm) | Area (%) | 2θ (°)           | d <sub>002</sub> (nm) | Area (%) |
| BCC    | 21.84             | 0.406                 | 37.01    | 23.65            | 0.376                 | 62.99    |
| NBCC-L | 21.74             | 0.408                 | 54.24    | 23.60            | 0.377                 | 46.59    |
| NBCC   | 21.60             | 0.410                 | 64.97    | 23.54            | 0.378                 | 35.03    |
| NBCC-H | 21.55             | 0.412                 | 69.03    | 23.42            | 0.379                 | 30.97    |

**Table S1**. Physical parameters of BCC, NBCC, NBCC-L and NBCC-H samples from XRD patterns.

| Binding        | Carbon  | Concentration (%) |        |       |        |
|----------------|---------|-------------------|--------|-------|--------|
| Energy<br>(eV) | Bonding | BCC               | NBBC-L | NBBC  | NBBC-H |
| 284.4          | C=C     | 76.5              | 68.15  | 63.44 | 57.7   |
| 285.9          | C-C/C-N | 10.69             | 17.61  | 24.33 | 25.93  |
| 286.4          | С-О     | 6.75              | 7.31   | 7.43  | 7.34   |
| 288.1          | С=О     | 2.28              | 4.45   | 2.75  | 7.04   |
| 289.6          | СООН    | 3.79              | 2.48   | 2.06  | 1.99   |

 Table S2. Carbon bonding analysis of BCC, NBCC, NBCC-L, NBCC-H.

| Anode Materials                       | Rate capability                                   |  |  |
|---------------------------------------|---------------------------------------------------|--|--|
|                                       | 499 mAh g <sup>-1</sup> at 0.05 A g <sup>-1</sup> |  |  |
|                                       | 405 mAh g <sup>-1</sup> at 0.1 A g <sup>-1</sup>  |  |  |
|                                       | 347 mAh g <sup>-1</sup> at 0.2 A g <sup>-1</sup>  |  |  |
|                                       | 278 mAh g <sup>-1</sup> at 0.5 A g <sup>-1</sup>  |  |  |
| NBCC (This work)                      | 231 mAh g <sup>-1</sup> at 1.0 A g <sup>-1</sup>  |  |  |
|                                       | 194 mAh g <sup>-1</sup> at 2.0 A g <sup>-1</sup>  |  |  |
|                                       | 134 mAh g <sup>-1</sup> at 5.0 A g <sup>-1</sup>  |  |  |
|                                       | 87 mAh g <sup>-1</sup> at 10.0 A g <sup>-1</sup>  |  |  |
|                                       | 325mAh g <sup>-1</sup> at 0.1 A g <sup>-1</sup>   |  |  |
|                                       | 270 mAh g <sup>-1</sup> at 0.2 A g <sup>-1</sup>  |  |  |
|                                       | 241 mAh g <sup>-1</sup> at 0.5 A g <sup>-1</sup>  |  |  |
| S co-doped soft carbon <sup>[2]</sup> | 209 mAh g <sup>-1</sup> at 1.0 A g <sup>-1</sup>  |  |  |
|                                       | 160 mAh g <sup>-1</sup> at 2.0 A g <sup>-1</sup>  |  |  |
|                                       | 115 mAh g <sup>-1</sup> at 5.0 A g <sup>-1</sup>  |  |  |
|                                       | 209 mAh g-1 at 0.1 A g <sup>-1</sup>              |  |  |
|                                       | 159 mAh g-1 at 0.2A g <sup>-1</sup>               |  |  |
| Activated carbon <sup>[3]</sup>       | 114 mAh g-1 at 0.4 A g <sup>-1</sup>              |  |  |
|                                       | 72 mAh g-1 at 0.8 A g <sup>-1</sup>               |  |  |
|                                       | 30 mAh g-1 at 1.0 A g <sup>-1</sup>               |  |  |
|                                       | 307 mAh g <sup>-1</sup> at 0.05 A g <sup>-1</sup> |  |  |
|                                       | 265 mAh g <sup>-1</sup> at 0.1 A g <sup>-1</sup>  |  |  |
|                                       | 246 mAh g <sup>-1</sup> at 0.2 A g <sup>-1</sup>  |  |  |
| -doped hollow carbon <sup>[4]</sup>   | 225 mAh g <sup>-1</sup> at 0.4 A g <sup>-1</sup>  |  |  |
|                                       | 213mAh g <sup>-1</sup> at 0.6 A g <sup>-1</sup>   |  |  |
|                                       | 206 mAh g <sup>-1</sup> at 0.8 A g <sup>-1</sup>  |  |  |
|                                       | 200 mAh g <sup>-1</sup> at 1.0 A g <sup>-1</sup>  |  |  |

**Table S3.** Comparisons of electrochemical performance of NBCC with other carbon anodes for PIBs.

|                                                | 208 mAh g <sup>-1</sup> at 0.05 A g <sup>-1</sup>   |  |  |  |
|------------------------------------------------|-----------------------------------------------------|--|--|--|
|                                                | 182 mAh g <sup>-1</sup> at 0.1A g <sup>-1</sup>     |  |  |  |
| N                                              | 141 mAh g <sup>-1</sup> at 0.2 A g <sup>-1</sup>    |  |  |  |
| Nano-size porous carbon spheres <sup>[5]</sup> | 104 mAh g <sup>-1</sup> at 0.5 A g <sup>-1</sup>    |  |  |  |
|                                                | 81 mAh g <sup>-1</sup> at 1.0 A g <sup>-1</sup>     |  |  |  |
|                                                | 51 mAh g <sup>-1</sup> at 2.0 A g <sup>-1</sup>     |  |  |  |
|                                                | 377 mAh g <sup>-1</sup> at 0.1 A g <sup>-1</sup> ,  |  |  |  |
|                                                | 305 mAh g <sup>-1</sup> at 0.2 A g <sup>-1</sup> ,  |  |  |  |
| N/O co-doped carbon hollow                     | 249 mAh g <sup>-1</sup> at 0.5 A g <sup>-1</sup> ,  |  |  |  |
| multihole bowls <sup>[6]</sup>                 | 216 mAh g <sup>-1</sup> at 1.0 A g <sup>-1</sup> ,  |  |  |  |
|                                                | 182 mAh g <sup>-1</sup> at 2.0 A g <sup>-1</sup>    |  |  |  |
|                                                | 367 mAh g <sup>-1</sup> at 0.05 A g <sup>-1</sup> , |  |  |  |
|                                                | 324 mAh g <sup>-1</sup> at.0.1 A g <sup>-1</sup> ,  |  |  |  |
|                                                | 248 mAh g <sup>-1</sup> at 0.2 A g <sup>-1</sup> ,  |  |  |  |
|                                                | 210 mAh g <sup>-1</sup> at 0.5A g <sup>-1</sup>     |  |  |  |
| honeycomb-like N-doped carbon <sup>[7]</sup>   | 162 mAh g <sup>-1</sup> at 1.0A g <sup>-1</sup>     |  |  |  |
|                                                | 123 mAh g <sup>-1</sup> at 2.0A g <sup>-1</sup>     |  |  |  |
|                                                | 103 mAh g <sup>-1</sup> at 5.0A g <sup>-1</sup>     |  |  |  |
|                                                | 91 mAh g <sup>-1</sup> at 10.0A g <sup>-1</sup>     |  |  |  |
|                                                | 175 mAh g <sup>-1</sup> at 0.05 A g <sup>-1</sup> , |  |  |  |
|                                                | 150 mAh g <sup>-1</sup> at 0.1 A g <sup>-1</sup> ,  |  |  |  |
| 3D porous carbon <sup>[8]</sup>                | 118 mAh g <sup>-1</sup> at 0.2 A g <sup>-1</sup> ,  |  |  |  |
|                                                | 93 mAh g <sup>-1</sup> at 0.4 A g <sup>-1</sup> ,   |  |  |  |
|                                                | 70 mAh g <sup>-1</sup> at 0.8 A g <sup>-1</sup> ,   |  |  |  |
|                                                | 293 mAh g <sup>-1</sup> at 0.05 A g <sup>-1</sup> , |  |  |  |
|                                                | 266 mAh g <sup>-1</sup> at 0.1 A g <sup>-1</sup> ,  |  |  |  |
| N-doped soft carbon <sup>[9]</sup>             | 246 mAh g <sup>-1</sup> at 0.2 A g <sup>-1</sup> ,  |  |  |  |
|                                                | 216 mAh g <sup>-1</sup> at 0.5 A g <sup>-1</sup> ,  |  |  |  |
|                                                | 194 mAh g <sup>-1</sup> at 1.0 A g <sup>-1</sup> .  |  |  |  |

## References

- Cui Y, Liu W, Lyu Y, et al. All-carbon lithium capacitor based on salt crystal-templated, N-doped porous carbon electrodes with superior energy storage [J]. Journal of Materials Chemistry A, 2018, 6(37): 18276-18285.
- [2] Liu Q, Han F, Zhou J, et al. Boosting the potassium-ion storage performance in soft carbon anodes by the synergistic effect of optimized molten salt medium and N/S dual-doping [J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20838-20848.
- [3] Tai Z, Zhang Q, Liu Y, et al. Activated carbon from the graphite with increased rate capability for the potassium ion battery [J]. Carbon, 2017, 123: 54-61.
- [4] Hong W, Zhang Y, Yang L, et al. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage [J]. Nano Energy, 2019, 65: 104038.
- [5] Zhang H, Luo C, He H, et al. Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries [J]. Nanoscale Horizons, 2020, 5(5): 895-903.
- [6] Zhang Z, Jia B, Liu L, et al. Hollow multihole carbon bowls: a stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries [J]. ACS Nano, 2019, 13(10): 11363-11371.
- [7] Li J, Li Y, Ma X, et al. A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries [J]. Chemical Engineering Journal, 2020, 384: 123328.
- [8] Li H, Cheng Z, Zhang Q, et al. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries [J].
   Nano Letters, 2018, 18(11): 7407-7413.
- [9] Liu F, Meng J, Xia F, et al. Origin of the extra capacity in nitrogen-doped porous carbon nanofibers for high-performance potassium ion batteries
   [J]. Journal of Materials Chemistry A, 2020, 8(35): 18079-18086.