Supporting Information

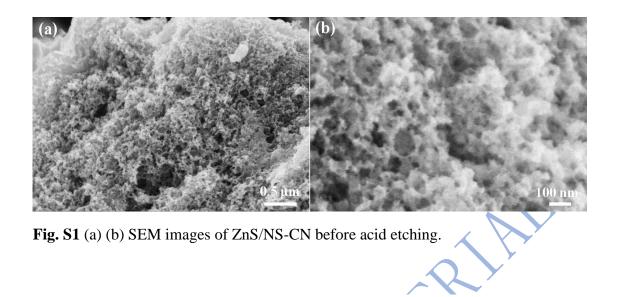
The in situ formation of ZnS nanodots embedded in honeycomb-like N-S co-doped carbon nanosheets derived from waste biomass for use in lithium-ion batteries

YU Qiu-xiang¹, LI Huan-xin^{1,2,*}, WEN Yong-liang¹, XU Chen-xi¹, QIN Shi-feng¹, KUANG Ya-fei¹

, ZHOU Hai-hui^{1,*}, HUANG Zhong-yuan^{1,*}

(1. College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan

410082, China;


2. Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3

OFA, UK)

*Corresponding authors: LI Huan-xin. E-mail: hl583@cam.ac.uk;

ZHOU Hai-hui. E-mail: haihuizh@163.com;

HUANG Zhong-yuan. E-mail: zhongyuan.222@163.com

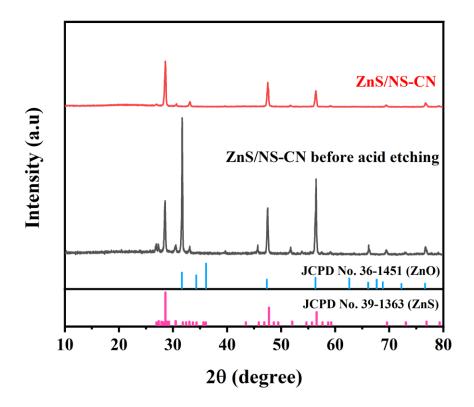
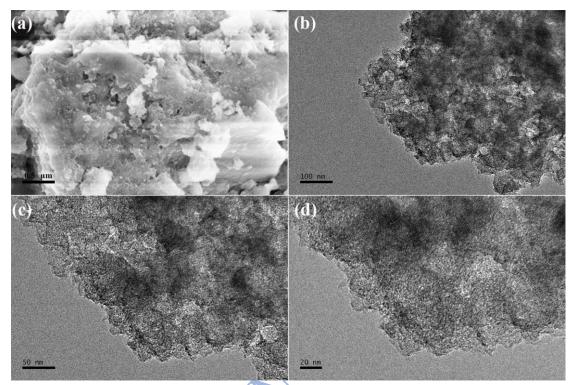



Fig. S2 XRD patterns of ZnS/NS-CN and ZnS/NS-CN before acid etching.

Fig. S3 The SEM image (a) and TEM images (b-d) of ZnS/NS-CN electrode after 1000 cycles at 5 A/g.

EN Cr.

Table S1 The electrochemical performances comparison with other ZnS-based

materials	Current	Cycles	Specific Capacity	Ref.
	density (A g ⁻¹)		(mAh g ⁻¹)	
ZnS/graphene	0.1	200	633	[1]
nS/C composites by MOF	0.3	80	624	[2]
ZnS/C	0.1	150	570	[3]
core-shell-like ZnS/C	0.2	500	750	[4]
nanoparticles				4
Co ₃ S ₄ –ZnS/NC	1	1000	316.5	[5]
nanoparticles				Y
ZnS/CoS/CoS ₂ @N-doped	0.1	200	622.7	[6]
carbon nanoparticles			$\langle \mathbf{Q} \rangle$	
ZnS@HPC composite	1	200	408	[7]
ZnS nanorods@HCP	0.6	300	840	[8]
ZnS-chicken feather	0.1	150	788	[9]
carbon (ZnS-CFC)			××	
Core-shell	0.1	200	520	[10]
IWCNTs@ZnS composite				
ZnS-QD@NC	1	500	620	[11]
ZnS-Sb/C nanospheres	0.1	150	747	[12]
ZnS/NS-CN	0.1	300	853.5	This Wor
	5	1000	291.6	

electrode materials in LIB.

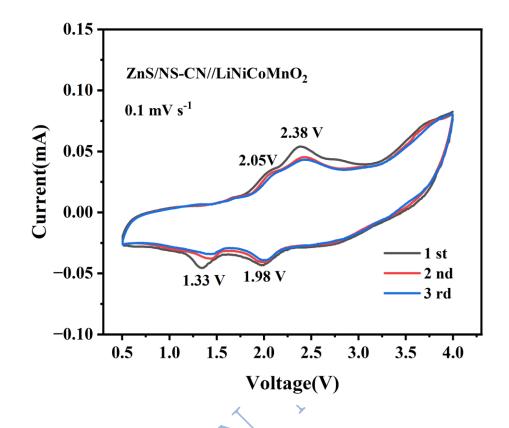


Fig. S4 CV curves of the ZnS/NS-CN//LiNiCoMnO₂ full cells.

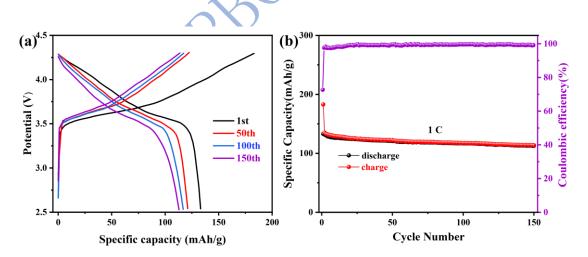


Fig. S5 Charge-discharge curves (a) and cyclic stability (b) of LiNiCoMnO₂ at 1 C.

References

[1] Mao M, Jiang L, Wu L, et al. The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(25): 13384-13389.

[2] Wu H, Li G, Li Y, et al. Synthesis of ZnS/C Composites by Metal-Organic Framework as High-Performance Lithium-Ion Batteries[J]. Crystal Research and Technology, 2019, 54(6): 1800281.

[3] Park A R, Jeon K J, Park C M. Electrochemical mechanism of Li insertion/extraction in ZnS and ZnS/C anodes for Li-ion batteries[J]. Electrochimica Acta, 2018, 265: 107-114.

[4] Du X, Zhao H, Lu Y, et al. Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries[J]. Electrochimica Acta, 2017, 228: 100-106.

[5] Zhang Z, Huang Y, Liu X, et al. Zeolitic imidazolate frameworks derived ZnS/Co_3S_4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials[J]. Carbon, 2020, 157: 244-254.

[6] Cheng W, Di H, Shi Z, et al. Synthesis of ZnS/CoS/CoS₂@N-doped carbon nanoparticles derived from metal-organic frameworks via spray pyrolysis as anode for lithium-ion battery[J]. Journal of Alloys and Compounds, 2020, 831: 154607.

[7] Chen H, Zhang B, Cao Y, et al. ZnS nanoparticles embedded in porous honeycomb-like carbon nanosheets as high performance anode material for lithium ion

batteries[J]. Ceramics International, 2018, 44(12): 13706-13711.

[8] Chen Z, Wu R, Wang H, et al. Construction of hybrid hollow architectures by in-situ rooting ultrafine ZnS nanorods within porous carbon polyhedra for enhanced lithium storage properties[J]. Chemical Engineering Journal, 2017, 326: 680-690.

[9] Rangaraj V M, Edathil A A, Kadirvelayutham P, et al. Chicken feathers as an intrinsic source to develop ZnS/carbon composite for Li-ion battery anode material[J]. Materials Chemistry and Physics, 2020, 248: 122953.

[10] Cao Y, Wang S, Liu C, et al. Core–shell MWCNTs@ZnS composite prepared by atomic layer deposition for high-performance lithium-ion batteries anode[J]. Journal of Materials Research, 2021, 36(6): 1262-1271.

[11] Lee S, Kim S, Gim J, et al. Ultra-small ZnS quantum dots embedded in N-doped carbon matrix for high-performance Li-ion battery anode[J]. Composites Part B: Engineering, 2022, 231: 109548.

[12] Yue M, Zhang C, Chen W, et al. Antimony and carbon dual-doped hollow ZnS-Sb/C nanospheres for enhanced sodium storage performance and its full battery application[J]. Journal of Alloys and Compounds, 2022, 910: 164822.