石墨烯改善铜抗腐蚀性能

Improved corrosion resistance of copper coated by graphene

  • 摘要: 通过常压化学气相沉积法(APCVD)在铜箔表面制备了高质量的石墨烯。采用光学显微镜(OM)、扫描电子显微镜(SEM)、高分辨率透射电镜(HRTEM)、拉曼光谱仪、紫外-可见光谱仪(UV-vis)和X射线光电子能谱仪(XPS)对石墨烯的形貌和结构进行表征,采用极化曲线和电化学阻抗谱对样品的抗腐蚀性能进行测试。结果表明,在1 000℃下,反应5、15 min,分别可以获得单层和三层石墨烯。高质量、连续的三层石墨烯可以有效提高铜箔在空气中的抗氧化性能及其在0.1 mol/L氯化钠溶液中的抗电化学腐蚀性能,但单层石墨烯不能确保铜箔完全不被腐蚀。三层石墨烯对铜的保护程度明显优于单层石墨烯。

     

    Abstract: High quality graphene on a Cu foil was synthesized by atmospheric pressure chemical vapor deposition. The morphology and microstructure of specimens were characterized by optical microscopy, scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, ultraviolet-visible spectroscopy and X-ray photoelectron spectroscopy. The corrosion resistance of specimens was tested by potentiodynamic polarization and electrochemical impedance spectroscopy. Results show that monolayer and high quality tri-layer graphene are synthesized at 1000℃ for 5 and 15 min depositions, respectively. The monolayer graphene cannot protect Cu efficiently from oxidation at 300℃ in air and from electrochemical corrosion in a 0.1 M NaCl solution due to its abundant defects and grain boundaries. The tri-layer graphene effectively increases the oxidation resistance and the electrochemical corrosion resistance. The protective performance of tri-layer graphene for a Cu foil is significantly better than that of monolayer graphene.

     

/

返回文章
返回