Synthesis and electrochemical properties of nano-Si/C composite anodes for lithium-ion batteries
-
摘要: 利用微胶囊技术将酚醛树脂包覆于纳米硅表面,然后在氩气保护下高温炭化,制得硅炭复合负极材料。首先采用4种不同质量比的酚醛树脂与纳米硅制备了硅碳复合材料,得到了不同炭质厚度的硅碳复合材料。通过对其循环性能和倍率性能的比较,发现酚醛树脂与纳米硅的质量比为1∶4,即碳层厚度为4.5 nm时,电化学性能最佳。随后对该种硅碳复合材料的综合电化学性能进行了测试,该材料作为负极制备的锂离子电池具有良好的电化学性能,在电流密度为100 mA g−1的条件下,其首次放电比容量为2382 mAh g−1,首次充电比容量为1667 mAh g−1,首次库伦效率为70%。经200次充放电循环后放电比容量为835.6 mAh g−1,库伦效率为99.2%。此外,其倍率性能非常优异,在100、200、500、1000、2000及100 mA g−1电流密度下,其平均放电比容量分别为1716.4、1231.6、911.7、676.1、339.8及1326.4 mAh g−1。Abstract: Phenolic resin was coated on the surface of nano-Si by a microencapsulation technique, and then carbonized under Ar protection to prepare a nano-Si/C composite. The composites were first prepared using 4 different mass ratios (1∶2, 1∶4, 1∶6, 1∶8) of phenolic resin to nano-Si. The obtained average thicknesses of amorphous carbon coating were 7, 4.5, 3.7, 2.8 nm, respectively. By comparing the cycling and rate capability, the best electrochemical performance was obtained when this ratio was 1∶4, with a 4.5 nm amorphous carbon coating. The electrochemical properties of this material were then comprehensively evaluated, showing excellent electrochemical performance as an anode material for Li-ion batteries. At a current density of 100 mAg−1, the material had a first specific discharge capacity of 2 382 mAhg−1, a first charge specific capacity of 1 667 mAhg−1, and an initial coulombic efficiency of 70%. A discharge specific capacity of 835.6 mAhg−1 was retained after 200 cycles with a high coulombic efficiency of 99.2%. In addition, the nano-Si/C composite demonstrated superior rate performance. Under current densities of 100, 200, 500, 1 000 and 2 000 mAg−1, the average specific discharge capacities were 1 716.4, 1 231.6, 911.7, 676.1 and 339.8 mAh g−1, respectively. When the current density returned to 100 mA g−1, the specific capacity returned to 1 326.4 mAh g−1.
-
Key words:
- Microencapsulation technology /
- Lithium-ion batteries /
- Silicon anode /
- High capacity /
- Low-cost
-
Figure 9. Electrochemical performance of nano-Si/C electrode with an amorphous carbon coating thickness of 4.5 nm: (a) the discharge and charge curves, (b) cycle voltammetry measurements, (c) cycling property at 100 mA g−1 and coulombic efficiency of nano-Si/C nanocomposite, (d) the high-rate cycling performance of nano-Si/C electrode
Table 1. Comparison of the recent work on Si-based composites as anodes for Lithium-ion batteries
-
[1] Huang X, Meng J, Liu W, et al. Lithium-ion battery lifetime extension with positive pulsed current charging[J]. Ieee Transactions on Industrial Electronics,2024,71(1):484-635. [2] Jin X, Han Y, Zhang Z, et al. Mesoporous Single-crystal lithium titanate enabling fast-charging li-ion batteries[J]. Advanced Materials,2022,34(210935618 [3] Liu W P, Xu H R, Qin H Q, et al. The effect of carbon coating on graphite@nano-Si composite as anode materials for Li-ion batteries[J]. Journal of Solid State Electrochemistry,2019,23:3363-3372. doi: 10.1007/s10008-019-04413-3 [4] Wang M Y, Yin L, Li M Q, et al. Low-cost heterogeneous dual-carbon shells coated silicon monoxide porous composites as anodes for high-performance lithium-ion batteries[J]. Journal of Colloid and Interface Science,2019,549:225-235. doi: 10.1016/j.jcis.2019.04.076 [5] Liangruksa M, Kanaphan Y, Meethong N, et al. First-principles investigation of defective graphene anchored with small silicon clusters as a potential anode material for lithium-ion batteries[J]. Surface Science. 2023, 737(122250). [6] Li P, Miao C, Yi D, et al. Pomegranate like silicon-carbon composites prepared from lignin-derived phenolic resins as anode materials for lithium-ion batteries[J]. New Journal of Chemistry,2023 [7] Dong Q C, Yang J, Wu M Y, et al. Template-free synthesis of cobalt silicate nanoparticles decorated nanosheets for high performance lithium-ion batteries[J]. ACS Sustain Chemistry & Engineering,2018,6:15591-15597. [8] Neiner D, Chiu H W, Kauzlarich S M. Low-temperature solution route to macro scopic amounts of hydrogen terminated silicon nanoparticles[J]. Journal of the American Chemical Society,2006,128(34):11016-11021. doi: 10.1021/ja064177q [9] Trill J, Tao C, Winter M, et al. NMR investigations on the lithiation and delithiation of nano silicon-based anodes for Li-ion batteries[J]. Journal of Solid State Electrochemistry,2011,15(2):349-356. doi: 10.1007/s10008-010-1260-0 [10] Hwa Y, Kim W S, Yu B C, et al. Facile synthesis of Si nanoparticles using magnesium silicide reduction and its carbon composite as a high-performance anode for Li-ion batteries[J]. Journal of Power Sources,2014,252(252):144-149. [11] Feng K, Li M, Liu W, et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications[J]. Small,2018,14(8):1702737. doi: 10.1002/smll.201702737 [12] Liu X H, Wang J W, Huang S, et al. In situ atomic-scale imaging of electrochemical lithiation in silicon[J]. Nature Nanotechnology,2012,7(11):749. doi: 10.1038/nnano.2012.170 [13] Leung K, Soto F, Hankins K, et al. Stability of solid electrolyte interphase components on lithium metal and reactive anode material surfaces[J]. Journal of Physical Chemistry C,2016,120(12):6302-6313. doi: 10.1021/acs.jpcc.5b11719 [14] Zhang W, Luo G, Xu Q, et al. Enhanced reversible lithium storage for nano-Si with a<10 nm homogeneous porous carbon coating layer[J]. Electrochimica Acta,2018,269:1-10. doi: 10.1016/j.electacta.2018.02.143 [15] Xiao Q, Zhang Q, Fan Y, et al. Soft silicon anodes for lithium ion batteries[J]. Energy & Environmental Science,2014,7(7):2261-2268. [16] Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology,2012,7(5):310-315. doi: 10.1038/nnano.2012.35 [17] Li Q, Yu M, Huang Y, et al. Phosphorus-doped silicon copper alloy composites as high-performance anode materials for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry. 2023, 944(117684). [18] Kim J S, Choi W, Cho K Y, et al. Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries[J]. Journal of Power Sources,2013,244:521-526. doi: 10.1016/j.jpowsour.2013.02.049 [19] Ge M, Lu Y, Ercius P, et al. Large-scale fabricaton, 3D tomography, and lithium-ion battery application of porous silicon[J]. Nano Letters,2013,14(1):261-268. [20] Chai L, Wang X, Bi C, et al. Lifetime optimization of amorphous silicon thin-film anodes for lithium-ion batteries[J]. ACS Applied Energy Materials,2023 [21] Hui W, Yi C. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today,2012,7(5):414-429. doi: 10.1016/j.nantod.2012.08.004 [22] He Z, Liu L, Liu S, et al. A novel design idea of high-stability silicon anodes for lithium-ion batteries: Building in-situ "high-speed channels" while reserving space[J]. Chemical Engineering Journal. 2023, 472(144991). [23] Wang B, Li W, Wu T, et al. Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries[J]. Energy Storage Materials,2018,15:139-147. doi: 10.1016/j.ensm.2018.03.025 [24] Wang G Q, Xu B, Shi J, et al. Confined Li ion migration in the silicon-graphene complex system: an ab initio investigation[J]. Applied Surface Science,2018,436:505-510. doi: 10.1016/j.apsusc.2017.11.237 [25] BerlaL A, Lee S W, Cui Y, et al. Mechanical behavior of electrochemically lithiated silicon[J]. Journal of Power Sources,2015,273:41-51. doi: 10.1016/j.jpowsour.2014.09.073 [26] Zhou Y, Guo H, Yong Y, et al. Introducing reduced grapheme oxide to improve the electrochemical performance of silicon-based materials encapsulated by carbonized polydopamine layer for lithium ion batteries[J]. Materials Letters,2017,195:164-167. doi: 10.1016/j.matlet.2017.02.127 [27] Zhou Y, Guo H J, Yan G H, et al. Fluidized bed reaction towards crystalline embedded amorphous Si anode with much enhanced cycling stability[J]. Chemical Communication,2018,54(30):3755-3758. doi: 10.1039/C8CC00575C [28] Roy A K, Zhong M, Schwab M G, et al. Preparation of a binder-free three-dimensional carbon foam/silicon composite as potential material for lithium ion battery anodes[J]. ACS Applied Materials & Interfaces,2016,8:7343-7348. [29] Fang M, Wang Z, Chen X, et al. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries[J]. Applied Surface Science,2018,436:345-353. doi: 10.1016/j.apsusc.2017.11.070 [30] Ye X, Gan C, Huang L, et al. Improving lithium-ion diffusion kinetics in nano-Si@C anode materials with hierarchical MoS2 decoration for high-performance lithium-ion batteries[J]. Chemelectrochem,2021,8(7):1270-1279. [31] Ma Y, Younesi R, Pan R, et al. Constraining Si particles within graphene foam monolith: Interfacial modification for high-performance Li+ storage and flexible integrated configuration[J]. Advanced Functional Materials,2016,26:6797-6806. doi: 10.1002/adfm.201602324 [32] Kaushik K, Marco-Tulio F R, Stephen E T, et al. Calendar-life versus cycle-life aging of lithium-ion cells with silicon-graphite composite electrodes[J]. Electrochimica Acta,2018,280:221-228. doi: 10.1016/j.electacta.2018.05.101 [33] Li Y, Xu G J, Yao Y F, et al. Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive[J]. Journal of Solid State Electrochemistry,2013,17(5):1393-1399. doi: 10.1007/s10008-013-2005-7 [34] Jing S L, Jiang H, Hu Y J, et al. Face-to face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life[J]. Advanced Functional Materials,2015,25:5395-5401. doi: 10.1002/adfm.201502330 [35] Zhang R, Du Y, Li D, et al. Highly reversible and large lithium storage in mesoporoussi/c nanocomposite anodes with silicon nanoparticles embedded in a carbon framework[J]. Advanced Materials,2014,26:6749-6755. doi: 10.1002/adma.201402813 [36] Zhang X, Qiu X, Kong D, et al. Silicene flowers: A dual stabilized silicon building block for high-performance lithium battery anodes[J]. ACS Nano,2017,11(7):7476-7484. doi: 10.1021/acsnano.7b03942 [37] Li C B, Li T, Kang L, et al. One-step synthesis of hollow structures Si/C composites based on expandable microspheres as anodes for lithium ion batteries[J]. Electrochemistry Communication,2016,72:69-73. doi: 10.1016/j.elecom.2016.09.006 [38] Xu Z L, Zhang B, Kim J K. Electrospun carbon nanofiber anodes containing monodispersed Si and nanoparticles and graphene oxide with exceptional high rate capacities[J]. Nano Energy,2014,6:27-35. doi: 10.1016/j.nanoen.2014.03.003 [39] Qi Z Y, Dai L Q, Wang Z F, et al. Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery[J]. New Carbon Materials,2022,37(1):245-258. [40] Gao P F, Fu J W, Yang J, et al. Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material[J]. Physical Chemistry Chemical Physics,2009,47(11):11101-11105. [41] Yi Z, Lin N, Xu T J, et al. TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage[J]. Chemical Engineering Journal,2018,347:214-222. doi: 10.1016/j.cej.2018.04.101 [42] Cao C T, Iwnetim I A, Eric S, et al. Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries[J]. Joule,2019,3:762-781. doi: 10.1016/j.joule.2018.12.013 [43] Schroder K W, Dylla A G, Harris S J, et al. Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2014,6:21510-21524. [44] He W, Tian H J, Xin F X, et al. Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:17956-17962. doi: 10.1039/C5TA04857E [45] Zhou X, Yin Y X, Wan L J, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries[J]. Advanced Energy Materials,2012,2(9):1086-1090. doi: 10.1002/aenm.201200158 [46] Li Q, Chen D, Li K, et al. Electrostatic self-assembly bmSi@C/rGO composite a anode material for lithium ion battery[J]. Electrochimica Acta,2016,202:140-146. doi: 10.1016/j.electacta.2016.04.019 [47] Du L L, Wei L, Chao L, et al. Lignin derived Si@C composites as a high performance anode material for lithium ion batteries[J]. Solid State Ionics,2018,319:77-82. [48] Chen Y L, Hu Y, Shen Z, et al. Hollow coreeshell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries[J]. Journal of Power Sources,2017,342:467-475. [49] Fang S, Shen L F, Xu G Y, et al. Rational design of void-involved Si@TiO2 nanospheres as high performance anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2014,6:6497-6503. [50] Fang S, Tong Z K, Nie P, et al. Raspberry-liked nanostructured silicon composite anode for high performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9:18766-18773. [51] Nie P, Liu X Y, Fu R R, et al. Mesoporous silicon anodes by using polybenzimidazole derived pyrrolic N-enriched carbon toward high-energy Li-ion batteries[J]. ACS Energy letters,2017,2:1279-1287. [52] Jaumann T, Gerwig M, Balach J, et al. Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries[J]. Journal of Materials Chemistry A,2017,5:9262-9271. [53] Shi J W, Gao H Y, Hu G X, et al. Core-shell structured Si@C nanocomposite for high-performance Li-ion batteries with a highly viscous gel as precursor[J]. Journal of Power Sources,2019,438:227001. -