Contribution of surface roughness and oxygen-containing groups to the interfacial shear strength of carbon fiber/epoxy resin composites
-
摘要: 炭纤维(CF)与基体之间的界面黏结对CF增强聚合物复合材料的性能至关重要。为了评估机械啮合和化学键合对炭纤维增强环氧树脂(EP)复合材料界面黏附性能的贡献,分离了炭纤维的表面粗糙度和含氧官能团以研究它们对界面黏附的影响。结果表明,氨水处理提高了表面粗糙度而不改变化学性能,而电化学处理在不改变表面粗糙度的情况下提高了化学性能。采用微滴法测试了CF/EP的界面剪切强度(IFSS),并通过线性拟合得到了IFSS与表面粗糙度和氧含量之间的函数关系。结果表明,在双官能和四官能环氧树脂体系中,化学键合对于增强界面黏附的贡献因子高于机械互锁。Abstract: The interfacial shear strength (IFSS) between carbon fibers (CFs) and the matrix is crucial to the performance of CF-reinforced polymer composites. To evaluate the contribution of mechanical interlocking and chemical anchoring at the interfaces of a polyacrylonitrile-based CF (TORAYCA T800SC-12000-10E)-reinforced epoxy resin (EP: bisphenol A type epoxy resin and tetrafunctional epoxy resin) composites, the surface roughness and content of oxygen-containing functional groups of the CFs were respectively altered by ammonia treatment and electrochemical oxidation. The results showed that ammonia treatment increased the surface roughness without much change to the surface elemental composition, while electrochemical oxidation increased the number of surface oxygen groups without changing the surface roughness. The IFSS of CF/EP composites was tested by the micro-droplet method. The relationships between IFSS, and surface roughness and oxygen content were obtained by linear fitting. The results showed that in the interfacial bonding of CF to epoxy resin, the contribution of chemical anchoring to the IFSS is larger than that of mechanical interlocking.
-
Key words:
- Carbon fiber /
- Epoxy resin /
- Mechanical interlocking /
- Chemical anchoring /
- Interfacial adhesion
-
Table 1. Average roughness (Ra) values of the CFs obtained from the AFM
Sample CF0 A-CF1 A-CF2 A-CF3 A-CF4 A-CF5 Ra/nm 10.2 12.2 13.2 14.3 17.2 22.4 Table 2. Elemental content of the CFs surface
Sample Element content/% C N O O/C CF0 88.89 2.45 8.66 9.74 A-CF1 88.71 2.67 8.62 9.72 A-CF2 90.39 1.97 7.64 8.45 A-CF3 90.50 2.01 7.49 8.28 A-CF4 89.26 2.48 8.26 9.25 A-CF5 89.10 2.36 8.54 9.58 E-CF1 87.01 3.19 9.80 11.26 E-CF2 85.93 2.73 11.34 13.20 E-CF3 83.38 3.15 13.47 16.15 E-CF4 81.68 2.89 15.43 18.89 Table 3. Relative contents of functional groups on the surface of CFs
Sample Relative content of functional groups (%) C―C C―O C=O ―COO CF0 88.43 6.11 4.21 1.24 A-CF1 88.29 6.17 3.70 1.84 A-CF2 88.44 6.60 3.27 1.68 A-CF3 90.04 6.24 2.10 1.62 A-CF4 89.71 6.37 2.29 1.63 A-CF5 89.21 6.35 2.94 1.51 E-CF1 85.98 8.82 1.84 3.37 E-CF2 83.93 10.49 1.46 4.12 E-CF3 81.91 12.33 0.72 5.04 E-CF4 76.76 14.56 1.50 7.18 Table 4. Dynamic contact angle and surface free energies of CFs
Sample Contact angle/(°) Surface energy/(mN/m) Deionized water γ CF0 76.27±0.49 37.80±0.33 A-CF1 75.60±0.50 38.20±0.31 A-CF2 75.00±0.17 38.60±0.10 A-CF3 73.77±0.67 39.40±0.41 A-CF4 72.27±0.61 40.30±0.38 A-CF5 70.40±0.53 41.50±0.33 E-CF1 68.50±1.82 42.70±1.13 E-CF2 64.10±0.61 45.30±0.39 E-CF3 61.20±0.78 47.10±0.48 E-CF4 56.83±0.15 49.80±0.10 -
[1] Shin H K, Park M, Kim H Y, et al. An overview of new oxidation methods for polyacrylonitrile-based carbon fibers[J]. Carbon letters,2015,16(1):11-18. doi: 10.5714/CL.2015.16.1.011 [2] Quan D, Farooq U, Zhao G et al. Recycled carbon fibre mats for interlayer toughening of carbon fibre/epoxy composites[J]. Materials & Design,2022,218:110671-110681. doi: 10.1016/J.MATDES.2022.110671 [3] Navarro C A, Ma Y, Michael K H, et al. Catalytic, aerobic depolymerization of epoxy thermoset composites[J]. Green Chemistry,2021,23(17):6356-6360. doi: 10.1039/D1GC01970H [4] Kim K W, Kim D K, Kim B S, et al. Cure behaviors and mechanical properties of carbon fiber-reinforced nylon6/epoxy blended matrix composites[J]. Composites Part B:Engineering,2017,112:15-21. doi: 10.1016/j.compositesb.2016.12.009 [5] Jiang J, Yao X, Xu C, et al. Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites[J]. Composites Part A:Applied Science and Manufacturing,2017,95:248-256. doi: 10.1016/j.compositesa.2017.02.004 [6] Vickers P E, Watts J F, Perruchot C, et al. The surface chemistry and acid–base properties of a PAN-based carbon fibre[J]. Carbon,2000,38(5):675-689. doi: 10.1016/S0008-6223(99)00137-2 [7] Jiao W W, Liu W B, Yang F, et al. Improving the interfacial property of carbon fiber/vinyl ester resin composite by grafting modification of sizing agent on carbon fiber surface[J]. Journal of Materials Science,2017,52:13812-13818. doi: 10.1007/s10853-017-1485-8 [8] Vautard F, Ozcan S, Meyer H. Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(7):1120-1133. doi: 10.1016/j.compositesa.2012.02.018 [9] Mäder E, Grundke K, Jacobasch H J, et al. Surface, interphase and composite property relations in fibre-reinforced polymers[J]. Composites,1994,25(7):739-744. doi: 10.1016/0010-4361(94)90209-7 [10] Pisanova E, Zhandarov S, Mäder E. How can adhesion be determined from micromechanical tests?[J]. Composites Part A:Applied Science and Manufacturing,2001,32(3-4):425-434. doi: 10.1016/S1359-835X(00)00055-5 [11] Zhandarov S F, Mäder E, Yurkevich O R. Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pull-out tests. Part I: local bond strength[J]. Journal of adhesion science and technology,2002,16(9):1171-1200. doi: 10.1163/156856102320256837 [12] Zhandarov S, Mäder E. Characterization of fiber/matrix interface strength: Applicability of different tests, approaches and parameters[J]. Composites Science and Technology,2005,65(1):149-160. doi: 10.1016/j.compscitech.2004.07.003 [13] Sharma M, Gao S, Mäder E, et al. Carbon fiber surfaces and composite interphases[J]. Composites Science and Technology,2014,102:35-50. doi: 10.1016/j.compscitech.2014.07.005 [14] Song W, Gu A, Liang G, et al. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites[J]. Applied surface science,2011,257(9):4069-4074. doi: 10.1016/j.apsusc.2010.11.177 [15] Lu C, Chen P, Yu Q, et al. Interfacial adhesion of plasma-treated carbon fiber/poly (phthalazinone ether sulfone ketone) composite[J]. Journal of applied polymer science,2007,106(3):1733-1741. doi: 10.1002/app.26840 [16] Li Z, Wu S, Zhao Z, et al. Influence of surface properties on the interfacial adhesion in carbon fiber/epoxy composites[J]. Surface and interface analysis,2014,46(1):16-23. doi: 10.1002/sia.5340 [17] Drzal L, Sugiura N, Hook D. The role of chemical bonding and surface topography in adhesion between carbon fibers and epoxy matrices[J]. Composite Interfaces,1996,4(5):337-354. doi: 10.1163/156855497X00073 [18] SU Ya nan, JING De qi, ZHANG Xing hua, et al. Effect of surface functionalization on the surface and interfacial properties of thermoplastic-coated carbon fibers[J]. New Carbon Mater,2021,36(6):1169-1178. doi: 10.1016/S1872-5805(21)60049-5 [19] XU Xiao tong, TIAN Xiao dong, LI Xiao, et al. The effect of the nitric acid heat treatment time on the electrochemical properties of NiCo2S4/carbon cloth composites as supercapacitor electrode materials[J]. New Carbon Materials,2020,35(3):244-252. doi: 10.19869/j.ncm.1007-8827.2020.03.001 [20] Bismarck A, Kumru M E, Springer J. Influence of oxygen plasma treatment of PAN-based carbon fibers on their electrokinetic and wetting properties[J]. Journal of colloid and interface science,1999,210(1):60-72. doi: 10.1006/jcis.1998.5912 [21] Li D, Neumann A. Equation of state for interfacial tensions of solid-liquid systems[J]. Advances in Colloid and Interface Science,1992,39:299-345. doi: 10.1016/0001-8686(92)80064-5 [22] Kang S K, Lee D B, Choi N S. Fiber/epoxy interfacial shear strength measured by the microdroplet test[J]. Composites Science and Technology,2009,69(2):245-251. doi: 10.1016/j.compscitech.2008.10.016 [23] Qian X, Chen L, Huang J, et al. Effect of carbon fiber surface chemistry on the interfacial properties of carbon fibers/epoxy resin composites[J]. Journal of Reinforced Plastics and Composites,2013,32(6):393-401. doi: 10.1177/0731684412468369 [24] Moosburger Will J, Jäger J, Strauch J, et al. Interphase formation and fiber matrix adhesion in carbon fiber reinforced epoxy resin: Influence of carbon fiber surface chemistry[J]. Composite Interfaces,2017,24(7):691-710. doi: 10.1080/09276440.2017.1267513 [25] Qian X, Zhang Y G, Wang X F, et al. Effect of carbon fiber surface functionality on the moisture absorption behavior of carbon fiber/epoxy resin composites[J]. Surface and Interface Analysis,2016,48(12):1271-1277. doi: 10.1002/sia.6031 [26] Li N, Liu G, Wang Z, et al. Effect of surface treatment on surface characteristics of carbon fibers and interfacial bonding of epoxy resin composites[J]. Fibers and Polymers,2014,15(11):2395-2403. doi: 10.1007/s12221-014-2395-x [27] Severini F, Formaro L, Pegoraro M, et al. Chemical modification of carbon fiber surfaces[J]. Carbon,2002,40(5):735-741. doi: 10.1016/S0008-6223(01)00180-4 [28] Bismarck A, Kumru M E, Springer J, et al. Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems[J]. Applied Surface Science,1999,143(1):45-55. [29] Yue Z R, Jiang W, Wang L, et al. Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon,1999,37(11):1785-1796. doi: 10.1016/S0008-6223(99)00047-0 [30] Meng L, Fan D, Zhang C, et al. The effect of oxidation treatment with supercritical water/hydrogen peroxide system on intersurface performance for polyacrylonitrile-based carbon fibers[J]. Applied Surface Science,2013,273:167-172. doi: 10.1016/j.apsusc.2013.02.007 [31] Xie Y, Sherwood P M. X-ray photoelectron-spectroscopic studies of carbon fiber surfaces 11. Differences in the surface chemistry and bulk structure of different carbon fibers based on poly (acrylonitrile) and pitch and comparison with various graphite samples[J]. Chemistry of Materials,1990,2(3):293-299. doi: 10.1021/cm00009a020 [32] Waldman D A, Zou Y L, Netravali A N. Ethylene/ammonia plasma polymer deposition for controlled adhesion of graphite fibers to PEEK[J]. Journal of adhesion science and technology,1995,9(11):1475-1503. doi: 10.1163/156856195X00149 [33] Desimoni E, Casella G, Morone A, et al. XPS determination of oxygen‐containing functional groups on carbon‐fibre surfaces and the cleaning of these surfaces[J]. Surface and Interface Analysis,1990,15(10):627-634. doi: 10.1002/sia.740151011 [34] Wang Y Q, Viswanathan H, Audi A A, et al. X-ray photoelectron spectroscopic studies of carbon fiber surfaces. 22. Comparison between surface treatment of untreated and previously surface-treated fibers[J]. Chemistry of materials,2000,12(4):1100-1107. doi: 10.1021/cm990734e [35] Li Jian. Effect of surface treatment on enhancing interfacial strength of carbon fiber/polyimide composites[J]. Journal of Thermoplastic Composite Materials,2022,35(5):708-719. doi: 10.1177/0892705720925141 -