留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤液化油渣基多孔炭材料的制备及其电磁波吸收性能

王建立 尹甜 张晨 杨旺 蒋波 李永峰 徐春明

王建立, 尹甜, 张晨, 杨旺, 蒋波, 李永峰, 徐春明. 煤液化油渣基多孔炭材料的制备及其电磁波吸收性能. 新型炭材料(中英文), 2023, 38(5): 875-886. doi: 10.1016/S1872-5805(23)60770-X
引用本文: 王建立, 尹甜, 张晨, 杨旺, 蒋波, 李永峰, 徐春明. 煤液化油渣基多孔炭材料的制备及其电磁波吸收性能. 新型炭材料(中英文), 2023, 38(5): 875-886. doi: 10.1016/S1872-5805(23)60770-X
WANG Jian-li, YIN Tian, ZHANG Chen, YANG Wang, JIANG Bo, LI Yong-feng, XU Chun-ming. The synthesis of porous carbon from coal liquefied residue and its electromagnetic wave absorption. New Carbon Mater., 2023, 38(5): 875-886. doi: 10.1016/S1872-5805(23)60770-X
Citation: WANG Jian-li, YIN Tian, ZHANG Chen, YANG Wang, JIANG Bo, LI Yong-feng, XU Chun-ming. The synthesis of porous carbon from coal liquefied residue and its electromagnetic wave absorption. New Carbon Mater., 2023, 38(5): 875-886. doi: 10.1016/S1872-5805(23)60770-X

煤液化油渣基多孔炭材料的制备及其电磁波吸收性能

doi: 10.1016/S1872-5805(23)60770-X
基金项目: 国家自然科学基金(21908245,22178384)。
详细信息
    作者简介:

    王建立,博士生. E-mail:jianli.wang@chnenergy.com

    通讯作者:

    杨 旺,博士,副教授. E-mail:wyang@cup.edu.cn

    李永峰,博士,教授. E-mail:yfli@cup.edu.cn

  • 中图分类号: TQ127.1+1

The synthesis of porous carbon from coal liquefied residue and its electromagnetic wave absorption

Funds: National Natural Science Foundation of China (21908245, 22178384).
More Information
  • 摘要: 为解决电磁辐射污染问题,开发经济环保的高效电磁波吸收材料制备工艺刻不容缓。碳基电磁波吸收材料因其独特优势而备受关注,但合适的前驱体碳源以及合理孔结构构筑策略仍是其制备面临的难题。本文以资源丰富的煤液化油渣为碳源,通过盐模板辅助策略,利用NaHCO3模板热分解过程中产生的Na2CO3和大量气体实现了多孔炭骨架的定向形成。相互贯穿的多孔结构不仅调节了炭材料的阻抗匹配,还延长了电磁波的传输路径,增强了介电损耗,在多种电磁损耗机制的协同作用下,煤液化残渣基多孔炭材料展现出优异的电磁波吸收能力。在质量分数仅为10%的填充比以及2.03 mm的厚度下,获得的多孔炭材料展现出−60.28 dB的反射损耗值,并实现了5.36 GHz的有效吸收频宽。因此,本文为高性能碳基电磁波吸收材料的开发提供了新的途径,也为煤液化油渣产品的高附加值利用提供了新的思路。
  • FIG. 2651.  FIG. 2651.

    FIG. 2651..  FIG. 2651.

    图  1  以煤液化残渣为碳源制备多孔炭材料的合成示意图

    Figure  1.  Schematic diagram of preparing porous carbon materials derived from coal liquefaction residue as carbon source

    图  2  不同温度制备得到多孔炭材料的SEM照片。(a-b)700 °C,(c-d)800 °C,(e-f)900 °C。PC-800样品的(g-h)TEM照片以及(i)其电子衍射图

    Figure  2.  SEM images of porous carbon materials prepared at different temperatures. (a-b) 700 °C, (c-d) 800 °C, (e-f) 900 °C. (g-h) TEM images of PC-800 sample and (i) its electron diffraction pattern

    图  3  不同样品的(a)拉曼光谱图与(b)XRD图。PC-800及C-800的(c)氮气吸脱附等温曲线图及(d)孔径分布曲线图

    Figure  3.  (a) Raman spectra and (b) XRD patterns of different samples; (c) N2 adsorption-desorption isotherms and (d) pore size distributions of PC-800 and C-800 samples

    图  4  PC-700、PC-800和PC-900三个样品的复介电常数(a)实部和(b)虚部。不同样品的Cole-Cole曲线图:(c)C-800、(d)PC-700、(e)PC-800和(f)PC-900

    Figure  4.  The relative permittivity (a) real part and (b) imaginary part for PC-700, PC-800, and PC-900 samples. The Cole-Cole plots for (c) C-800, (d) PC-700, (e) PC-800 and (f) PC-900

    图  5  质量分数为10%的填充量下(a-b)PC-700、(c-d)PC-800和(e-f)PC-900三个样品在不同频率和厚度下的3D RL图和相应2D投影图

    Figure  5.  3D RL plots and corresponding 2D projection plots at varying frequencies and thickness for (a-b) PC-700, (c-d) PC-800 and (e-f) PC-900 at the same fill ratio of 10% (mass fraction)

    图  6  不同厚度下PC-800的(a)RL曲线和(b)对应厚度下的EAB

    Figure  6.  (a) The RL curve and (b) the detailed EAB of PC-800 at various thicknesses

    图  7  (a)PC-700、(b)PC-800和(c)PC-900在不同厚度下的|Zin–1|. (d)2~18 GHz下3个样品的衰减常数(α

    Figure  7.  The modulus of Zin–1 at different thicknesses of (a) PC-700, (b) PC-800 and (c) PC-900. (d) The attenuation constant (α) for 3 samples from 2 to 18 GHz

    图  8  电磁波吸收机理示意图

    Figure  8.  The electromagnetic waves absorption mechanisms of the PC material

  • [1] Jiang B, Yang W, Bai H, et al. Facile fabrication of Fe/Fe5C2@N-doped porous carbon as an efficient microwave absorbent with strong and broadband absorption properties at an ultralow filler loading[J]. Carbon,2022,196:890-901. doi: 10.1016/j.carbon.2022.05.045
    [2] Cheng Y, Zhao H, Lv H, et al. Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications[J]. Advanced Electronic Materials,2020,6:1900796. doi: 10.1002/aelm.201900796
    [3] Xu X, Ran F, Fan Z, et al. Acidified bimetallic MOFs constructed Co/N co-doped low dimensional hybrid carbon networks for high-efficiency microwave absorption[J]. Carbon,2021,171:211-220. doi: 10.1016/j.carbon.2020.08.070
    [4] Deng W, Li T, Li H, et al. Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior[J]. Journal of Colloid and Interface Science,2022,61:129-140.
    [5] Qiu Y, Yang H, Wen B, et al. Facile synthesis of nickel/carbon nanotubes hybrid derived from metal organic framework as a lightweight, strong and efficient microwave absorber[J]. Journal of Colloid and Interface Science,2021,590:561-570. doi: 10.1016/j.jcis.2021.02.003
    [6] Tian K, Wu Y, Shu R, et al. Facile synthesis of rod-like nickel cobaltite decorated reduced graphene oxide composites with excellent microwave absorption performance[J]. Materials Letters,2021,295:129825. doi: 10.1016/j.matlet.2021.129825
    [7] Yang W, Wang C, Jiang B, et al. Lightweight 3D interconnected porous carbon with robust cavity skeleton derived from petroleum pitch for effective multi-band electromagnetic wave absorption[J]. Carbon,2022,200:390-400. doi: 10.1016/j.carbon.2022.08.069
    [8] Xu X, Shi S, Tang Y, et al. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application[J]. Advanced Science,2021,8:2002658. doi: 10.1002/advs.202002658
    [9] Ren H, Li T, Wang H, et al. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection[J]. Chemical Engineering Journal,2022,427:131582. doi: 10.1016/j.cej.2021.131582
    [10] Wang G, Zhao Y, Yang F, et al. Multifunctional integrated transparent film for efficient electromagnetic protection[J]. Nano-Micro Letters,2022,14:65. doi: 10.1007/s40820-022-00810-y
    [11] Cheng J, Shi H, Cao M, et al. Porous carbon materials for microwave absorption[J]. Advanced Materials,2020,1:2631-2645. doi: 10.1039/D0MA00662A
    [12] Li X, Yin X, Han M, et al. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C,2017,5:4068-4074. doi: 10.1039/C6TC05226F
    [13] Hou X, Wang W, Gao X, et al. Salt template assisted synthesis of Fe@graphene for high-performance electromagnetic wave absorption[J]. Carbon,2022,199:268-278. doi: 10.1016/j.carbon.2022.07.072
    [14] Kumar R, Sahoo S, Joanni E, et al. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding[J]. Carbon,2021,177:304-331. doi: 10.1016/j.carbon.2021.02.091
    [15] Ren S, Yu H, Wang L, et al. State of the art and prospects in metal-organic framework-derived microwave absorption materials[J]. Nano-Micro Letters,2022,14:68. doi: 10.1007/s40820-022-00808-6
    [16] Yang W, Jiang B, Che S, et al. Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms[J]. New Carbon Materials,2021,36:1016-1030. doi: 10.1016/S1872-5805(21)60095-1
    [17] Zhang C, Li X, Shi Y, et al. Structure engineering of graphene nanocages toward high-performance microwave absorption applications[J]. Advanced Optical Materials,2022,10:2101904. doi: 10.1002/adom.202101904
    [18] Qin M, Zhang L, Wu H. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science,2022,9:2105553. doi: 10.1002/advs.202105553
    [19] Quan B, Shi W, Ong S, et al. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications[J]. Advanced Functional Materials,2019,29:1901236. doi: 10.1002/adfm.201901236
    [20] Zhao H, Xu X, Wang Y, et al. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution[J]. Small,2020,16:2003407. doi: 10.1002/smll.202003407
    [21] Liu D, Du Y, Wang F, et al. MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption[J]. Carbon,2020,157:478-485. doi: 10.1016/j.carbon.2019.10.056
    [22] Xu J, Zhang X, Zhao Z, et al. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties[J]. Small,2021,17:2102032. doi: 10.1002/smll.202102032
    [23] Fan D, Wei B, Wu R, et al. Dielectric control of ultralight hollow porous carbon spheres and excellent microwave absorbing properties[J]. Journal of Materials Science,2021,56:6830-6844. doi: 10.1007/s10853-021-05780-x
    [24] Li Y, Yang W, Tu Z, et al. In-situ bonding with sulfur in petroleum asphalt to synthesize transition metal (Mn, Mo, Fe or Co)-based/carbon composites for superior lithium storage[J]. Carbon,2021,182:700-710. doi: 10.1016/j.carbon.2021.06.051
    [25] Yang W, Wang P, Tu Z, et al. Heteroatoms-doped hierarchical porous carbon with multi-scale structure derived from petroleum asphalt for high-performance supercapacitors[J]. Carbon,2022,187:338-348. doi: 10.1016/j.carbon.2021.11.008
    [26] Li Z, Lin H, Ding S, et al. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon[J]. Carbon,2020,167:148-159. doi: 10.1016/j.carbon.2020.05.070
    [27] Wu Z, Tian K, Huang T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Applied Materials & Interfaces,2018,10:11108-11115.
    [28] Karthikeyan K K, Biji P. A novel biphasic approach for direct fabrication of highly porous, flexible conducting carbon nanofiber mats from polyacrylonitrile (PAN)/NaHCO3 nanocomposite[J]. Microporous and Mesoporous Materials,2016,224:372-383. doi: 10.1016/j.micromeso.2015.12.055
    [29] Yang B, Chen J, Lei S, et al. Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power- density and long-life sodium ion hybrid capacitors[J]. Advanced Energy Materials,2018,8:1702409. doi: 10.1002/aenm.201702409
    [30] Yang W, Li R, Jiang B, et al. Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents[J]. Carbon,2020,166:218-226. doi: 10.1016/j.carbon.2020.05.043
    [31] Yang W, Yan L, Jiang B, et al. Crumpled nitrogen-doped porous carbon nanosheets derived from petroleum pitch for high-performance and flexible electromagnetic wave absorption[J]. Industrial & Engineering Chemistry Research,2022,61:2799-2808.
    [32] Song S, Zhang A, Chen L, et al. A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption[J]. Carbon,2021,176:279-289. doi: 10.1016/j.carbon.2021.01.138
    [33] Zhang Y, Huang Y, Zhang T, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials,2015,27:2049-2053. doi: 10.1002/adma.201405788
    [34] Wang J, Liu L, Jiao S, et al. Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption[J]. Advanced Functional Materials,2020,30:2002595. doi: 10.1002/adfm.202002595
    [35] Li X, Yin X, Song C, et al. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance[J]. Advanced Functional Materials,2018,28:1803938.
    [36] Yang W, Jiang B, Liu Z, et al. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption[J]. Journal of Materials Science & Technology,2021,70:214-223.
    [37] Xu X, Wang G, Wan G, et al. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption[J]. Chemical Engineering Journal,2020,382:122980. doi: 10.1016/j.cej.2019.122980
    [38] He P, Cao M, Shu J, et al. Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy[J]. ACS Applied Materials & Interfaces,2019,11:12535-12543.
    [39] Cao M, Wang X, Cao W, et al. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion[J]. Small,2018,14:1800987. doi: 10.1002/smll.201800987
    [40] Zhang D, Xiong Y, Cheng J, et al. Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles[J]. Science Bulletin,2020,65:138-146. doi: 10.1016/j.scib.2019.10.011
  • 20230506supportting imformation.pdf
  • 加载中
图(9)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  50
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 录用日期:  2023-07-04
  • 修回日期:  2023-06-28
  • 网络出版日期:  2023-07-12
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回