[1] |
Jiang B, Yang W, Bai H, et al. Facile fabrication of Fe/Fe5C2@N-doped porous carbon as an efficient microwave absorbent with strong and broadband absorption properties at an ultralow filler loading[J]. Carbon,2022,196:890-901. doi: 10.1016/j.carbon.2022.05.045
|
[2] |
Cheng Y, Zhao H, Lv H, et al. Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications[J]. Advanced Electronic Materials,2020,6:1900796. doi: 10.1002/aelm.201900796
|
[3] |
Xu X, Ran F, Fan Z, et al. Acidified bimetallic MOFs constructed Co/N co-doped low dimensional hybrid carbon networks for high-efficiency microwave absorption[J]. Carbon,2021,171:211-220. doi: 10.1016/j.carbon.2020.08.070
|
[4] |
Deng W, Li T, Li H, et al. Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior[J]. Journal of Colloid and Interface Science,2022,61:129-140.
|
[5] |
Qiu Y, Yang H, Wen B, et al. Facile synthesis of nickel/carbon nanotubes hybrid derived from metal organic framework as a lightweight, strong and efficient microwave absorber[J]. Journal of Colloid and Interface Science,2021,590:561-570. doi: 10.1016/j.jcis.2021.02.003
|
[6] |
Tian K, Wu Y, Shu R, et al. Facile synthesis of rod-like nickel cobaltite decorated reduced graphene oxide composites with excellent microwave absorption performance[J]. Materials Letters,2021,295:129825. doi: 10.1016/j.matlet.2021.129825
|
[7] |
Yang W, Wang C, Jiang B, et al. Lightweight 3D interconnected porous carbon with robust cavity skeleton derived from petroleum pitch for effective multi-band electromagnetic wave absorption[J]. Carbon,2022,200:390-400. doi: 10.1016/j.carbon.2022.08.069
|
[8] |
Xu X, Shi S, Tang Y, et al. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application[J]. Advanced Science,2021,8:2002658. doi: 10.1002/advs.202002658
|
[9] |
Ren H, Li T, Wang H, et al. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection[J]. Chemical Engineering Journal,2022,427:131582. doi: 10.1016/j.cej.2021.131582
|
[10] |
Wang G, Zhao Y, Yang F, et al. Multifunctional integrated transparent film for efficient electromagnetic protection[J]. Nano-Micro Letters,2022,14:65. doi: 10.1007/s40820-022-00810-y
|
[11] |
Cheng J, Shi H, Cao M, et al. Porous carbon materials for microwave absorption[J]. Advanced Materials,2020,1:2631-2645. doi: 10.1039/D0MA00662A
|
[12] |
Li X, Yin X, Han M, et al. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C,2017,5:4068-4074. doi: 10.1039/C6TC05226F
|
[13] |
Hou X, Wang W, Gao X, et al. Salt template assisted synthesis of Fe@graphene for high-performance electromagnetic wave absorption[J]. Carbon,2022,199:268-278. doi: 10.1016/j.carbon.2022.07.072
|
[14] |
Kumar R, Sahoo S, Joanni E, et al. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding[J]. Carbon,2021,177:304-331. doi: 10.1016/j.carbon.2021.02.091
|
[15] |
Ren S, Yu H, Wang L, et al. State of the art and prospects in metal-organic framework-derived microwave absorption materials[J]. Nano-Micro Letters,2022,14:68. doi: 10.1007/s40820-022-00808-6
|
[16] |
Yang W, Jiang B, Che S, et al. Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms[J]. New Carbon Materials,2021,36:1016-1030. doi: 10.1016/S1872-5805(21)60095-1
|
[17] |
Zhang C, Li X, Shi Y, et al. Structure engineering of graphene nanocages toward high-performance microwave absorption applications[J]. Advanced Optical Materials,2022,10:2101904. doi: 10.1002/adom.202101904
|
[18] |
Qin M, Zhang L, Wu H. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science,2022,9:2105553. doi: 10.1002/advs.202105553
|
[19] |
Quan B, Shi W, Ong S, et al. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications[J]. Advanced Functional Materials,2019,29:1901236. doi: 10.1002/adfm.201901236
|
[20] |
Zhao H, Xu X, Wang Y, et al. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution[J]. Small,2020,16:2003407. doi: 10.1002/smll.202003407
|
[21] |
Liu D, Du Y, Wang F, et al. MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption[J]. Carbon,2020,157:478-485. doi: 10.1016/j.carbon.2019.10.056
|
[22] |
Xu J, Zhang X, Zhao Z, et al. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties[J]. Small,2021,17:2102032. doi: 10.1002/smll.202102032
|
[23] |
Fan D, Wei B, Wu R, et al. Dielectric control of ultralight hollow porous carbon spheres and excellent microwave absorbing properties[J]. Journal of Materials Science,2021,56:6830-6844. doi: 10.1007/s10853-021-05780-x
|
[24] |
Li Y, Yang W, Tu Z, et al. In-situ bonding with sulfur in petroleum asphalt to synthesize transition metal (Mn, Mo, Fe or Co)-based/carbon composites for superior lithium storage[J]. Carbon,2021,182:700-710. doi: 10.1016/j.carbon.2021.06.051
|
[25] |
Yang W, Wang P, Tu Z, et al. Heteroatoms-doped hierarchical porous carbon with multi-scale structure derived from petroleum asphalt for high-performance supercapacitors[J]. Carbon,2022,187:338-348. doi: 10.1016/j.carbon.2021.11.008
|
[26] |
Li Z, Lin H, Ding S, et al. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon[J]. Carbon,2020,167:148-159. doi: 10.1016/j.carbon.2020.05.070
|
[27] |
Wu Z, Tian K, Huang T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Applied Materials & Interfaces,2018,10:11108-11115.
|
[28] |
Karthikeyan K K, Biji P. A novel biphasic approach for direct fabrication of highly porous, flexible conducting carbon nanofiber mats from polyacrylonitrile (PAN)/NaHCO3 nanocomposite[J]. Microporous and Mesoporous Materials,2016,224:372-383. doi: 10.1016/j.micromeso.2015.12.055
|
[29] |
Yang B, Chen J, Lei S, et al. Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power- density and long-life sodium ion hybrid capacitors[J]. Advanced Energy Materials,2018,8:1702409. doi: 10.1002/aenm.201702409
|
[30] |
Yang W, Li R, Jiang B, et al. Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents[J]. Carbon,2020,166:218-226. doi: 10.1016/j.carbon.2020.05.043
|
[31] |
Yang W, Yan L, Jiang B, et al. Crumpled nitrogen-doped porous carbon nanosheets derived from petroleum pitch for high-performance and flexible electromagnetic wave absorption[J]. Industrial & Engineering Chemistry Research,2022,61:2799-2808.
|
[32] |
Song S, Zhang A, Chen L, et al. A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption[J]. Carbon,2021,176:279-289. doi: 10.1016/j.carbon.2021.01.138
|
[33] |
Zhang Y, Huang Y, Zhang T, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials,2015,27:2049-2053. doi: 10.1002/adma.201405788
|
[34] |
Wang J, Liu L, Jiao S, et al. Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption[J]. Advanced Functional Materials,2020,30:2002595. doi: 10.1002/adfm.202002595
|
[35] |
Li X, Yin X, Song C, et al. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance[J]. Advanced Functional Materials,2018,28:1803938.
|
[36] |
Yang W, Jiang B, Liu Z, et al. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption[J]. Journal of Materials Science & Technology,2021,70:214-223.
|
[37] |
Xu X, Wang G, Wan G, et al. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption[J]. Chemical Engineering Journal,2020,382:122980. doi: 10.1016/j.cej.2019.122980
|
[38] |
He P, Cao M, Shu J, et al. Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy[J]. ACS Applied Materials & Interfaces,2019,11:12535-12543.
|
[39] |
Cao M, Wang X, Cao W, et al. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion[J]. Small,2018,14:1800987. doi: 10.1002/smll.201800987
|
[40] |
Zhang D, Xiong Y, Cheng J, et al. Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles[J]. Science Bulletin,2020,65:138-146. doi: 10.1016/j.scib.2019.10.011
|