A highly selective and sensitive electrochemical Cu(II) detector based on ion-imprinted magnetic carbon nanospheres
-
摘要: 本文报道一种基于Cu(II)离子印迹聚合物为识别元件的电化学传感器。通过耦合表面离子印迹和电化学沉积的制备方法,制备了由磁性碳纳米球组成的离子印迹聚合物电极。所组装的传感器表现出对Cu(II)检测的特异识别性和高灵敏特性。通过场发射扫描电子显微镜和透射电子显微镜对印迹聚合物的微观形貌进行表征,采用傅里叶变换红外光谱对其官能团和化学结构进行表征。传感器电化学性能表明,与非印迹电极和裸电极相比,印迹电极对Cu(II)具有更强的选择性和更高的灵敏度。传感器对浓度为10−6至10−10 mol L−1的Cu(II)表现出良好的线性相应电流,其检测限提升至5.138×10−16 mol L−1 (S/N=3)。此外,该传感器具有良好的抗干扰性、重现性和稳定性,为金属离子的检测提供了新的策略。Abstract: An electrochemical sensor for Cu(II) based on ion-imprinted polymers was prepared by combining surface imprinting with electrochemical polymerization deposition. The sensor was modified by ion-imprinted magnetic carbon nanospheres with a specific selectivity and sensitivity for Cu(II). The morphology and structure of the materials were characterized and analyzed. Sensors with the imprinted electrode had a stronger selectivity and higher sensitivity towards Cu(II) compared with their original counterparts. Within relative concentrations of Cu(II) from 10−6 to 10−10 mol L−1, the detection limit of the sensor was as low as 5.138×10−16 mol L−1 (S/N=3). The sensor is resistant to interference, and has good reproducibility, and stability, making it excellent for the electrochemical detection of metal ions.
-
Table 1. Energy (eV) calculations for Cu(II), pyrrole, and their complex
Complex Pyrrole Cu(II) ΔE −50331.386 −5713.985 −44606.425 −10.976 Table 2. Comparison for the linear ranges and detection limits of the Cu(II) sensors
Material Detection mothod Linear range (ng/L) Detection limit (ng/L) Ref. QDs@IIPs Fluorimetric detection 110-58000 35 [35] OMNiIIP Electrochemical detection 8-7807 1.8 [36] Cu(II)-IIPs Optic
detection2540-317500 1710 [37] CPE/FMC Electrochemical detection 31750-107950 5207 [38] Cu(II)-IIHMC ICP-MS 50-50000 8 [39] MIP Fluorimetric detection 6350-6350000 – [40] CQDs@Cu-IIP Fluorimetric detection 250000-2000000
3000000-10000000– [41] Cu(II)-IIPs/GCE Electrochemical detection 6.35-63500 3.26×10−5 This work -
[1] Yu F P, Pan Z L, Li L, et al. Preparation and performance of electrocatalytic carbon membranes for treating micro-polluted water[J]. New Carbon Materials,2022,37(3):615-624. doi: 10.1016/S1872-5805(22)60610-3 [2] Liu W, Zhang R, Kang Y, et al. Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells[J]. New Carbon Materials,2019,34(4):390-402. doi: 10.1016/S1872-5805(19)30024-1 [3] Uauy R, Olivares M, Gonzalez M. Essentiality of copper in humans[J]. The American Journal of Clinical Natrition,1998,67(5):952S-959S. doi: 10.1093/ajcn/67.5.952S [4] Mahata S, Dey S, Mandal B B, et al. 3-(2-Hydroxyphenyl)imidazo[5, 1-a]isoquinoline as Cu(II) sensor, its Cu(II) complex for selective detection of CN− ion and biological compatibility[J]. Journal of Photochemistry and Photobiology A:Chemistry,2022,427:113795. doi: 10.1016/j.jphotochem.2022.113795 [5] Wu X X, Shi W, Yang Y F, et al. Multi-targeted fluorescent probes for detection of Zn(II) and Cu(II) ions based on ESIPT mechanism[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2023,287:122051. doi: 10.1016/j.saa.2022.122051 [6] Wang Y, Wu W T, Wu M B, et al. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions[J]. New Carbon Materials,2015,30(6):550-559. doi: 10.1016/S1872-5805(15)60204-9 [7] Lan G Y, Huang C C, and Chang H T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions[J]. Chemical Communications,2010,46(8):1257-1259. doi: 10.1039/b920783j [8] Kowalewska Z, Ruszczyńska A, and Bulska E. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2005,60(3):351-359. doi: 10.1016/j.sab.2005.02.002 [9] Zhang L, Li Z H, Du X H, et al. Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,86:443-448. doi: 10.1016/j.saa.2011.10.065 [10] Hu Q F, Yang G Y, Zhao Y Y, et al. Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RP-HPLC with UV-Vis detection[J]. Analytical and Bioanalytical Chemistry,2003,375(6):831-835. doi: 10.1007/s00216-003-1828-y [11] Meng X T, Zhu D J, Jiang Y H, et al. Electrochemical sensing of phenacetin on electrochemically reduced graphene oxide modified glassy carbon electrode[J]. New Carbon Materials,2022,37(4):764-772. doi: 10.1016/S1872-5805(21)60087-2 [12] Manousi N, Kabir A, Furton K G, et al. An automatic on-line sol-gel pyridylethylthiopropyl functionalized silica-based sorbent extraction system coupled to flame atomic absorption spectrometry for lead and copper determination in beer samples[J]. Food Chemistry,2022,394:133548. doi: 10.1016/j.foodchem.2022.133548 [13] Lei P, Zhou Y, Zhao S, et al. Carbon-supported X-manganate (X = Ni, Zn and Cu) nanocomposites for sensitive electrochemical detection of trace heavy metal ions[J]. Journal of Hazardous Materials,2022,435:129036. doi: 10.1016/j.jhazmat.2022.129036 [14] Jiang J, Chen X, Niu Y, et al. Advances in flexible sensors with MXene materials[J]. New Carbon Materials,2022,37(2):303-320. doi: 10.1016/S1872-5805(22)60589-4 [15] Huo D Q, Zhang Y, Li N, et al. Three-dimensional graphene/amino-functionalized metal–organic framework for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II), and Hg(II)[J]. Analytical and Bioanalytical Chemistry,2022,414(4):1575-1586. doi: 10.1007/s00216-021-03779-6 [16] Zuo Y X, Xu J K, Zhu X F, et al. Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review[J]. Microchimica Acta,2019,186(3):171. doi: 10.1007/s00604-019-3248-5 [17] Gong Q J, Han H X, Wang Y D, et al. An electrochemical sensor for dopamine detection based on the electrode of a poly-tryptophan-functionalized graphene composite[J]. New Carbon Materials,2020,35(1):34-41. doi: 10.1016/S1872-5805(20)60473-5 [18] An Z L, Liu W F, Liang Q, et al. Ion-imprinted polymers modified sensor for electrochemical detection of Cu2+[J]. Nano,2018,13(12):1850140. doi: 10.1142/S1793292018501400 [19] Liu W F, An Z L, Qin L, et al. Construction of a novel ion imprinted film to remove low concentration Cu2+ from aqueous solution[J]. Chemical Engineering Journal,2021,411:128477. doi: 10.1016/j.cej.2021.128477 [20] Xi Y, Shi H, Liu R, et al. Insights into ion imprinted membrane with a delayed permeation mechanism for enhancing Cd2+ selective separation[J]. Journal of Hazardous Materials,2021,416:125772. doi: 10.1016/j.jhazmat.2021.125772 [21] Gao S J, Liu W F, Fu D J, et al. Research progress on recovering the components of spent Li-ion batteries[J]. New Carbon Materials,2022,37(3):435-460. doi: 10.1016/S1872-5805(22)60605-x [22] Budnicka M, Sobiech M, Kolmas J, et al. Frontiers in ion imprinting of alkali- and alkaline-earth metal ions – Recent advancements and application to environmental, food and biomedical analysis[J]. TrAC Trends in Analytical Chemistry,2022,156:116711. doi: 10.1016/j.trac.2022.116711 [23] Sala A, Brisset H, Margaillan A, et al. Electrochemical sensors modified with ion-imprinted polymers for metal ion detection[J]. TrAC Trends in Analytical Chemistry,2022,148:116536. doi: 10.1016/j.trac.2022.116536 [24] Yu H Y, Shao P H, Fang L L, et al. Palladium ion-imprinted polymers with PHEMA polymer brushes: Role of grafting polymerization degree in anti-interference[J]. Chemical Engineering Journal,2019,359:176-185. doi: 10.1016/j.cej.2018.11.149 [25] Aminikhah M, Babaei A, and Taheri A. A novel electrochemical sensor based on molecularly imprinted polymer nanocomposite platform for sensitive and ultra-selective determination of citalopram[J]. Journal of Electroanalytical Chemistry,2022,918:116493. doi: 10.1016/j.jelechem.2022.116493 [26] Zhou X Y, Wang B Q, Wang R. Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application[J]. Separation and Purification Technology,2022,298:121469. doi: 10.1016/j.seppur.2022.121469 [27] Wang J Y, Hu J F, Hu S W, et al. Recent progress in the use of graphene/polymer composites to remove oil contaminants from water[J]. New Carbon Materials,2021,36(2):235-252. doi: 10.1016/S1872-5805(21)60018-5 [28] Liu W F, Qin L, An Z L, et al. Thermo-responsive ion imprinted polymer on the surface of magnetic carbon microspheres for identification and removal of low-concentrations of Cu2+[J]. Environmental Chemistry,2018,15(5):306-316. doi: 10.1071/EN18046 [29] Spaolonzi M P, Duarte E D V, Oliveira M G, et al. Green-functionalized carbon nanotubes as adsorbents for the removal of emerging contaminants from aqueous media[J]. Journal of Cleaner Production,2022,373:133961. doi: 10.1016/j.jclepro.2022.133961 [30] Francisco J E, Feiteira F N, Da Silva W A, et al. Synthesis and application of ion-imprinted polymer for the determination of mercury II in water samples[J]. Environmental Science and Pollution Research,2019,26(19):19588-19597. doi: 10.1007/s11356-019-05178-y [31] Chaipuang A, Phungpanya C, Thongpoon C, et al. Synthesis of copper(II) ion-imprinted polymers via suspension polymerization[J]. Polymers for Advanced Technologies,2018,29(12):3134-3141. doi: 10.1002/pat.4434 [32] Adauto A, Wong A, Khan S, et al. A selective electrochemical sensor for the detection of Cd(II) based on a carbon paste electrode impregnated with a novel ion-imprinted hybrid polymer[J]. Electroanalysis,2021,33(6):1557-1566. doi: 10.1002/elan.202100007 [33] Kang W W, Cui Y, Yang Y Z, et al. An acid induction strategy to construct an ultralight and durable amino-functionalized graphene oxide aerogel for enhanced quinoline pollutants extraction from coking wastewater[J]. Chemical Engineering Journal,2021,412:128686. doi: 10.1016/j.cej.2021.128686 [34] Ding J, Wu X D, Shen X D, et al. Synthesis and textural evolution of mesoporous Si3N4 aerogel with high specific surface area and excellent thermal insulation property via the urea assisted sol-gel technique[J]. Chemical Engineering Journal,2020,382:122880. doi: 10.1016/j.cej.2019.122880 [35] Qi J, Li B W, Wang X R, et al. Three-dimensional paper-based microfluidic chip device for multiplexed fluorescence detection of Cu2+ and Hg2+ ions based on ion imprinting technology[J]. Sensors and Actuators B:Chemical,2017,251:224-233. doi: 10.1016/j.snb.2017.05.052 [36] Prasad B B and Fatma S. Electrochemical sensing of ultra trace copper(II) by alga-OMNiIIP modified pencil graphite electrode[J]. Sensors and Actuators B:Chemical,2016,229:655-663. doi: 10.1016/j.snb.2016.02.028 [37] Gerdan Z, Saylan Y, Uğur M, et al. Ion-imprinted polymer-on-a-sensor for copper detection[J]. Biosensors,2022,12(2):91. doi: 10.3390/bios12020091 [38] Santos J C, Matos C R S, Pereira G B S, et al. Stable CdTe nanocrystals grown in situ in thiol-modified MCM-41 mesoporous silica: Control synthesis and electrochemical detection of Cu2+[J]. Microporous and Mesoporous Materials,2016,221:48-57. doi: 10.1016/j.micromeso.2015.09.024 [39] Fei J J, Wu X H, Sun Y L, et al. Preparation of a novel amino functionalized ion-imprinted hybrid monolithic column for the selective extraction of trace copper followed by ICP-MS detection[J]. Analytica Chimica Acta,2021,1162:338477. doi: 10.1016/j.aca.2021.338477 [40] Xue X T, Zhang M, Gong H Y, et al. Recyclable nanoparticles based on a boronic acid–diol complex for the real-time monitoring of imprinting, molecular recognition and copper ion detection[J]. Journal of Materials Chemistry B,2022,10(35):6698-6706. doi: 10.1039/D1TB02226A [41] Wang Z M, Zhou C, Wu S W, et al. Ion-imprinted polymer modified with carbon quantum dots as a highly sensitive copper(II) ion probe[J]. Polymers,2021,13(9):1376. doi: 10.3390/polym13091376 -